Predicting User Perception of Move Brilliance in Chess
- URL: http://arxiv.org/abs/2406.11895v1
- Date: Fri, 14 Jun 2024 17:46:26 GMT
- Title: Predicting User Perception of Move Brilliance in Chess
- Authors: Kamron Zaidi, Michael Guerzhoy,
- Abstract summary: We show the first system for classifying chess moves as brilliant.
The system achieves an accuracy of 79% (with 50% base-rate), a PPV of 83%, and an NPV of 75%.
We show that a move is more likely to be predicted as brilliant, all things being equal, if a weaker engine considers it lower-quality.
- Score: 3.434553688053531
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI research in chess has been primarily focused on producing stronger agents that can maximize the probability of winning. However, there is another aspect to chess that has largely gone unexamined: its aesthetic appeal. Specifically, there exists a category of chess moves called ``brilliant" moves. These moves are appreciated and admired by players for their high intellectual aesthetics. We demonstrate the first system for classifying chess moves as brilliant. The system uses a neural network, using the output of a chess engine as well as features that describe the shape of the game tree. The system achieves an accuracy of 79% (with 50% base-rate), a PPV of 83%, and an NPV of 75%. We demonstrate that what humans perceive as ``brilliant" moves is not merely the best possible move. We show that a move is more likely to be predicted as brilliant, all things being equal, if a weaker engine considers it lower-quality (for the same rating by a stronger engine). Our system opens the avenues for computer chess engines to (appear to) display human-like brilliance, and, hence, creativity.
Related papers
- Explore the Reasoning Capability of LLMs in the Chess Testbed [45.12891789312405]
We propose improving the reasoning capability of large language models in chess by integrating annotated strategy and tactic.
We finetune the LLaMA-3-8B model and compare it against state-of-the-art commercial language models in the task of selecting better chess moves.
arXiv Detail & Related papers (2024-11-11T01:42:56Z) - Intransitively winning chess players positions [91.3755431537592]
The space of relations between winningness of positions of chess players is non-Euclidean.
The Zermelo-von Neumann theorem is complemented by statements about possibility vs. impossibility of building pure winning strategies.
arXiv Detail & Related papers (2022-12-11T05:55:05Z) - Are AlphaZero-like Agents Robust to Adversarial Perturbations? [73.13944217915089]
AlphaZero (AZ) has demonstrated that neural-network-based Go AIs can surpass human performance by a large margin.
We ask whether adversarial states exist for Go AIs that may lead them to play surprisingly wrong actions.
We develop the first adversarial attack on Go AIs that can efficiently search for adversarial states by strategically reducing the search space.
arXiv Detail & Related papers (2022-11-07T18:43:25Z) - Mastering the Game of Stratego with Model-Free Multiagent Reinforcement
Learning [86.37438204416435]
Stratego is one of the few iconic board games that Artificial Intelligence (AI) has not yet mastered.
Decisions in Stratego are made over a large number of discrete actions with no obvious link between action and outcome.
DeepNash beats existing state-of-the-art AI methods in Stratego and achieved a yearly (2022) and all-time top-3 rank on the Gravon games platform.
arXiv Detail & Related papers (2022-06-30T15:53:19Z) - Measuring the Non-Transitivity in Chess [19.618609913302855]
We quantify the non-transitivity in Chess through real-world data from human players.
There exists a strong connection between the degree of non-transitivity and the progression of a Chess player's rating.
arXiv Detail & Related papers (2021-10-22T12:15:42Z) - LiveChess2FEN: a Framework for Classifying Chess Pieces based on CNNs [0.0]
We have implemented a functional framework that automatically digitizes a chess position from an image in less than 1 second.
We have analyzed different Convolutional Neural Networks for chess piece classification and how to map them efficiently on our embedded platform.
arXiv Detail & Related papers (2020-12-12T16:48:40Z) - Chess2vec: Learning Vector Representations for Chess [0.0]
We generate and evaluate vector representations for chess pieces.
We uncover the latent structure of chess pieces and moves, as well as predict chess moves from chess positions.
arXiv Detail & Related papers (2020-11-02T14:50:48Z) - Assessing Game Balance with AlphaZero: Exploring Alternative Rule Sets
in Chess [5.3524101179510595]
We use AlphaZero to creatively explore and design new chess variants.
We compare nine other variants that involve atomic changes to the rules of chess.
By learning near-optimal strategies for each variant with AlphaZero, we determine what games between strong human players might look like if these variants were adopted.
arXiv Detail & Related papers (2020-09-09T15:49:14Z) - Learning to Play Sequential Games versus Unknown Opponents [93.8672371143881]
We consider a repeated sequential game between a learner, who plays first, and an opponent who responds to the chosen action.
We propose a novel algorithm for the learner when playing against an adversarial sequence of opponents.
Our results include algorithm's regret guarantees that depend on the regularity of the opponent's response.
arXiv Detail & Related papers (2020-07-10T09:33:05Z) - Playing Chess with Limited Look Ahead [0.0]
We train a deep neural network to serve as a static evaluation function.
We show that our static evaluation function has encoded some semblance of look ahead knowledge.
We show that, despite strict restrictions on look ahead depth, our engine recommends moves of equal strength in roughly $83%$ of our sample positions.
arXiv Detail & Related papers (2020-07-04T16:02:43Z) - Smooth markets: A basic mechanism for organizing gradient-based learners [47.34060971879986]
We introduce smooth markets (SM-games), a class of n-player games with pairwise zero sum interactions.
SM-games codify a common design pattern in machine learning that includes (some) GANs, adversarial training, and other recent algorithms.
We show that SM-games are amenable to analysis and optimization using first-order methods.
arXiv Detail & Related papers (2020-01-14T09:19:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.