Model Evaluation and Anomaly Detection in Temporal Complex Networks using Deep Learning Methods
- URL: http://arxiv.org/abs/2406.11901v1
- Date: Sat, 15 Jun 2024 09:19:09 GMT
- Title: Model Evaluation and Anomaly Detection in Temporal Complex Networks using Deep Learning Methods
- Authors: Alireza Rashnu, Sadegh Aliakbary,
- Abstract summary: This paper proposes an automatic approach based on deep learning to handle the issue of results evaluation for temporal network models.
In addition to an evaluation method, the proposed method can also be used for anomaly detection in evolving networks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modeling complex networks allows us to analyze the characteristics and discover the basic mechanisms governing phenomena such as disease outbreaks, information diffusion, transportation efficiency, social influence, and even human brain function. Consequently, various network generative models (called temporal network models) have been presented to model how the network topologies evolve dynamically over time. Temporal network models face the challenge of results evaluation because common evaluation methods are appropriate only for static networks. This paper proposes an automatic approach based on deep learning to handle this issue. In addition to an evaluation method, the proposed method can also be used for anomaly detection in evolving networks. The proposed method has been evaluated on five different datasets, and the evaluations show that it outperforms the alternative methods based on the error rate measure in different datasets.
Related papers
- A stable deep adversarial learning approach for geological facies
generation [32.97208255533144]
Deep generative learning is a promising approach to overcome the limitations of traditional geostatistical simulation models.
This research aims to investigate the application of generative adversarial networks and deep variational inference for conditionally meandering channels in underground volumes.
arXiv Detail & Related papers (2023-05-12T14:21:14Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
We revisit anomaly detection techniques based on PCA from a probabilistic generative model point of view.
We have evaluated the mathematical model using two different datasets.
arXiv Detail & Related papers (2023-02-02T13:41:18Z) - MLDS: A Dataset for Weight-Space Analysis of Neural Networks [0.0]
We present MLDS, a new dataset consisting of thousands of trained neural networks with carefully controlled parameters.
This dataset enables new insights into both model-to-model and model-to-training-data relationships.
arXiv Detail & Related papers (2021-04-21T14:24:26Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
This paper presents a visual framework to investigate neural network models subjected to adversarial examples.
We show how observing these elements can quickly pinpoint exploited areas in a model.
arXiv Detail & Related papers (2021-03-18T13:04:21Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
We propose a neural network-based meta-learning method for supervised anomaly detection.
We experimentally demonstrate that the proposed method achieves better performance than existing anomaly detection and few-shot learning methods.
arXiv Detail & Related papers (2021-03-01T01:43:04Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
We investigate the transferability of adversarial examples for text classification models.
We propose a genetic algorithm to find an ensemble of models that can induce adversarial examples to fool almost all existing models.
We derive word replacement rules that can be used for model diagnostics from these adversarial examples.
arXiv Detail & Related papers (2020-11-17T10:45:05Z) - DNS Covert Channel Detection via Behavioral Analysis: a Machine Learning
Approach [0.09176056742068815]
We propose an effective covert channel detection method based on the analysis of DNS network data passively extracted from a network monitoring system.
The proposed solution has been evaluated over a 15-day-long experimental session with the injection of traffic that covers the most relevant exfiltration and tunneling attacks.
arXiv Detail & Related papers (2020-10-04T13:28:28Z) - Amortized Bayesian Inference for Models of Cognition [0.1529342790344802]
Recent advances in simulation-based inference using specialized neural network architectures circumvent many previous problems of approximate Bayesian computation.
We provide a general introduction to amortized Bayesian parameter estimation and model comparison.
arXiv Detail & Related papers (2020-05-08T08:12:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.