論文の概要: AgileCoder: Dynamic Collaborative Agents for Software Development based on Agile Methodology
- arxiv url: http://arxiv.org/abs/2406.11912v1
- Date: Sun, 16 Jun 2024 17:57:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-20 00:46:12.081724
- Title: AgileCoder: Dynamic Collaborative Agents for Software Development based on Agile Methodology
- Title(参考訳): AgileCoder: アジャイル方法論に基づいたソフトウェア開発のための動的協調エージェント
- Authors: Minh Huynh Nguyen, Thang Phan Chau, Phong X. Nguyen, Nghi D. Q. Bui,
- Abstract要約: アジャイル方法論をフレームワークに統合するマルチエージェントシステムであるAgileCoderを提案する。
このシステムは、Product Manager、Developer、Testerといった特定のAMロールを異なるエージェントに割り当て、ユーザ入力に基づいて協調してソフトウェアを開発する。
また、動的コードグラフ生成(Dynamic Code Graph Generator)も導入しています。
- 参考スコア(独自算出の注目度): 5.164094478488741
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Software agents have emerged as promising tools for addressing complex software engineering tasks. However, existing works oversimplify software development workflows by following the waterfall model. Thus, we propose AgileCoder, a multi-agent system that integrates Agile Methodology (AM) into the framework. This system assigns specific AM roles such as Product Manager, Developer, and Tester to different agents, who then collaboratively develop software based on user inputs. AgileCoder enhances development efficiency by organizing work into sprints, focusing on incrementally developing software through sprints. Additionally, we introduce Dynamic Code Graph Generator, a module that creates a Code Dependency Graph dynamically as updates are made to the codebase. This allows agents to better comprehend the codebase, leading to more precise code generation and modifications throughout the software development process. AgileCoder surpasses existing benchmarks, like ChatDev and MetaGPT, establishing a new standard and showcasing the capabilities of multi-agent systems in advanced software engineering environments. Our source code can be found at https://github.com/FSoft-AI4Code/AgileCoder.
- Abstract(参考訳): ソフトウェアエージェントは、複雑なソフトウェアエンジニアリングタスクに対処するための有望なツールとして登場した。
しかしながら、既存の作業はウォーターフォールモデルに従うことで、ソフトウェア開発のワークフローを単純化する。
そこで我々は、Agile Methodology(AM)をフレームワークに統合するマルチエージェントシステムであるAgileCoderを提案する。
このシステムは、Product Manager、Developer、Testerといった特定のAMロールを異なるエージェントに割り当て、ユーザ入力に基づいて協調してソフトウェアを開発する。
AgileCoderはスプリントに作業を整理することで開発効率を向上し、スプリントを通じてソフトウェアを漸進的に開発することに重点を置いている。
さらに、コードベースへの更新に伴って、動的にコード依存グラフを生成するモジュールであるDynamic Code Graph Generatorも導入しています。
これにより、エージェントはコードベースをより理解し、ソフトウェア開発プロセス全体を通してより正確なコード生成と修正を行うことができます。
AgileCoderは、ChatDevやMetaGPTといった既存のベンチマークを超え、新しい標準を確立し、高度なソフトウェアエンジニアリング環境におけるマルチエージェントシステムの能力を示す。
ソースコードはhttps://github.com/FSoft-AI4Code/AgileCoder.orgにある。
関連論文リスト
- RepoGraph: Enhancing AI Software Engineering with Repository-level Code Graph [63.87660059104077]
RepoGraphは、現代のAIソフトウェアエンジニアリングソリューションのためのリポジトリレベルの構造を管理するプラグインモジュールである。
RepoGraphはすべてのシステムのパフォーマンスを大幅に向上させ、オープンソースフレームワークの間で新たな最先端技術を生み出している。
論文 参考訳(メタデータ) (2024-10-03T05:45:26Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
Code-Development Benchmark (Codev-Bench)は、細粒度で現実世界、リポジトリレベル、開発者中心の評価フレームワークです。
Codev-Agentは、リポジトリのクローリングを自動化し、実行環境を構築し、既存のユニットテストから動的呼び出しチェーンを抽出し、データ漏洩を避けるために新しいテストサンプルを生成するエージェントベースのシステムである。
論文 参考訳(メタデータ) (2024-10-02T09:11:10Z) - Think-on-Process: Dynamic Process Generation for Collaborative Development of Multi-Agent System [13.65717444483291]
ToP (Think-on-Process) はソフトウェア開発のための動的プロセス生成フレームワークである。
本フレームワークはGPT-3.5とGPT-4の動的プロセス生成能力を著しく向上させる。
論文 参考訳(メタデータ) (2024-09-10T15:02:34Z) - HyperAgent: Generalist Software Engineering Agents to Solve Coding Tasks at Scale [12.173834895070827]
大規模言語モデル(LLM)がソフトウェア工学(SE)に革命をもたらした
最近の進歩にもかかわらず、これらのシステムは一般的に特定のSE関数用に設計されている。
我々は,多種多様なSEタスクに対処するために設計された,革新的な汎用マルチエージェントシステムHyperAgentを紹介する。
論文 参考訳(メタデータ) (2024-09-09T19:35:34Z) - OpenHands: An Open Platform for AI Software Developers as Generalist Agents [109.8507367518992]
私たちは、人間の開発者と同じような方法で世界と対話するAIエージェントを開発するためのプラットフォームであるOpenHandsを紹介します。
プラットフォームが新しいエージェントの実装を可能にし、コード実行のためのサンドボックス環境との安全なインタラクション、評価ベンチマークの導入について説明する。
論文 参考訳(メタデータ) (2024-07-23T17:50:43Z) - Multi-Agent Software Development through Cross-Team Collaboration [30.88149502999973]
ソフトウェア開発のためのスケーラブルなマルチチームフレームワークである、クロスチームコラボレーション(CTC)を紹介します。
CTCは、組織されたチームがさまざまな決定を共同で提案し、洞察とコミュニケーションすることを可能にする。
その結果,最先端のベースラインに比べて品質が顕著に向上した。
論文 参考訳(メタデータ) (2024-06-13T10:18:36Z) - SOEN-101: Code Generation by Emulating Software Process Models Using Large Language Model Agents [50.82665351100067]
FlowGenは、複数のLarge Language Model (LLM)エージェントに基づいたソフトウェアプロセスモデルをエミュレートするコード生成フレームワークである。
FlowGenScrumをHumanEval、HumanEval-ET、MBPP、MBPP-ETの4つのベンチマークで評価した。
論文 参考訳(メタデータ) (2024-03-23T14:04:48Z) - Xcrum: A Synergistic Approach Integrating Extreme Programming with Scrum [0.0]
この記事では,スクラムとエクストリームプログラミング(XP)という,2つの著名なアジャイル方法論の概要を紹介する。
XPプラクティスをスクラムに統合することで、"Xcrum"と呼ばれる新しいハイブリッド方法論が生まれました。
この新しいアプローチが両方のメソッドの強みを取り入れていることを考えると、オリジナルのフレームワークを上回る可能性を秘めている点に注意が必要だ。
論文 参考訳(メタデータ) (2023-10-05T01:39:10Z) - Collaborative, Code-Proximal Dynamic Software Visualization within Code
Editors [55.57032418885258]
本稿では,コードエディタに組み込むソフトウェアビジュアライゼーション手法の設計と実装について紹介する。
私たちのコントリビューションは、ソフトウェアシステムの実行時の動作の動的解析を使用するという点で、関連する作業と異なります。
私たちの視覚化アプローチは、一般的なリモートペアプログラミングツールを強化し、共有コード都市を利用することで協調的に使用できます。
論文 参考訳(メタデータ) (2023-08-30T06:35:40Z) - The GitHub Development Workflow Automation Ecosystems [47.818229204130596]
大規模なソフトウェア開発は、非常に協力的な取り組みになっています。
この章では、開発ボットとGitHub Actionsのエコシステムについて解説する。
この領域における最先端技術に関する広範な調査を提供する。
論文 参考訳(メタデータ) (2023-05-08T15:24:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。