論文の概要: Tracking the perspectives of interacting language models
- arxiv url: http://arxiv.org/abs/2406.11938v1
- Date: Mon, 17 Jun 2024 17:20:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-20 00:36:26.335726
- Title: Tracking the perspectives of interacting language models
- Title(参考訳): 対話型言語モデルにおける視点の追跡
- Authors: Hayden Helm, Brandon Duderstadt, Youngser Park, Carey E. Priebe,
- Abstract要約: 大規模言語モデル(LLM)は前例のない速度で高品質な情報を生成することができる。
これらのモデルが社会に浸透し続ければ、それらが生み出すコンテンツはますますデータベースに浸透していくだろう。
- 参考スコア(独自算出の注目度): 11.601000749578647
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language models (LLMs) are capable of producing high quality information at unprecedented rates. As these models continue to entrench themselves in society, the content they produce will become increasingly pervasive in databases that are, in turn, incorporated into the pre-training data, fine-tuning data, retrieval data, etc. of other language models. In this paper we formalize the idea of a communication network of LLMs and introduce a method for representing the perspective of individual models within a collection of LLMs. Given these tools we systematically study information diffusion in the communication network of LLMs in various simulated settings.
- Abstract(参考訳): 大型言語モデル(LLM)は前例のない速度で高品質な情報を生成することができる。
これらのモデルが社会に浸透し続けていくにつれ、それらが生み出すコンテンツは、事前学習データ、微調整データ、検索データなどの他の言語モデルに組み込まれるデータベースにおいて、ますます普及していくでしょう。
本稿では,LLMの通信ネットワークの考え方を定式化し,LLMの集合内の個々のモデルの視点を表現する手法を提案する。
これらのツールを用いて,様々な環境下でのLLMの通信ネットワークにおける情報拡散を系統的に研究する。
関連論文リスト
- A Survey of Multimodal Large Language Model from A Data-centric Perspective [46.57232264950785]
マルチモーダル大言語モデル(MLLM)は、複数のモーダルからのデータの統合と処理によって、標準的な大言語モデルの能力を高める。
データはこれらのモデルの開発と改良において重要な役割を担います。
論文 参考訳(メタデータ) (2024-05-26T17:31:21Z) - Data Augmentation using Large Language Models: Data Perspectives, Learning Paradigms and Challenges [47.45993726498343]
データ強化(DA)は、データ収集を必要とせずにトレーニング例を多様化することにより、モデルパフォーマンスを向上させる重要な手法として登場した。
本調査では,大規模言語モデル(LLM)がDAに与える影響,特に自然言語処理(NLP)以降の文脈において,それらが持つ固有の課題と機会に対処する。
論文 参考訳(メタデータ) (2024-03-05T14:11:54Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
VLM(Vision-Language Models)は、画像キャプションや視覚的質問応答といった複雑なタスクに対処できる高度なモデルである。
我々の分類では、VLMを視覚言語理解専用のモデル、マルチモーダル入力を処理するモデル、マルチモーダル入力とアウトプットの両方を受け付け、生成するモデルという3つのカテゴリに分類する。
我々は各モデルを慎重に識別し、基礎となるアーキテクチャ、データソースのトレーニング、および可能な限りの強度と限界を広範囲に分析する。
論文 参考訳(メタデータ) (2024-02-20T18:57:34Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Let Models Speak Ciphers: Multiagent Debate through Embeddings [84.20336971784495]
この問題を解決するためにCIPHER(Communicative Inter-Model Protocol Through Embedding Representation)を導入する。
自然言語から逸脱することで、CIPHERはモデルの重みを変更することなく、より広い範囲の情報を符号化する利点を提供する。
このことは、LLM間の通信における代替の"言語"としての埋め込みの優越性と堅牢性を示している。
論文 参考訳(メタデータ) (2023-10-10T03:06:38Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
近年,事前学習型大規模言語モデル (LLM) は,インコンテキスト学習(in-context learning)として知られる推論時少数ショット学習能力を実現する上で,顕著な効率性を示している。
本研究では,現実のLLMを潜在変数モデルとみなし,ベイズレンズによる文脈内学習現象を考察することを目的とする。
論文 参考訳(メタデータ) (2023-01-27T18:59:01Z) - Towards Continual Entity Learning in Language Models for Conversational
Agents [0.5330240017302621]
我々はエンティティ認識言語モデル(EALM)を導入し、エンティティのカタログに基づいて訓練されたエンティティモデルを事前訓練されたLMに統合する。
統合言語モデルでは,文コンテキストに応じて,エンティティモデルからの情報を事前学習したLMに適応的に付加する。
タスク指向対話データセットでは,特に長文発話では,難易度が大幅に向上した。
論文 参考訳(メタデータ) (2021-07-30T21:10:09Z) - Data Augmentation for Spoken Language Understanding via Pretrained
Language Models [113.56329266325902]
音声言語理解(SLU)モデルの訓練は、しばしばデータ不足の問題に直面している。
我々は,事前学習言語モデルを用いたデータ拡張手法を提案し,生成した発話の変動性と精度を向上した。
論文 参考訳(メタデータ) (2020-04-29T04:07:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。