論文の概要: The Benefits and Risks of Transductive Approaches for AI Fairness
- arxiv url: http://arxiv.org/abs/2406.12011v1
- Date: Mon, 17 Jun 2024 18:29:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-20 00:16:57.254473
- Title: The Benefits and Risks of Transductive Approaches for AI Fairness
- Title(参考訳): AIフェアネスのためのトランスダクティブアプローチのメリットとリスク
- Authors: Muhammed Razzak, Andreas Kirsch, Yarin Gal,
- Abstract要約: ホールドアウト集合の組成変化がフェアネス指標に大きく影響を与えることを示す。
不均衡なホールトアウトセットは、既存の格差を悪化させ、バランスの取れたホールトアウトは、不均衡なトレーニングデータによってもたらされる問題を緩和する。
- 参考スコア(独自算出の注目度): 37.59479986626171
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, transductive learning methods, which leverage holdout sets during training, have gained popularity for their potential to improve speed, accuracy, and fairness in machine learning models. Despite this, the composition of the holdout set itself, particularly the balance of sensitive sub-groups, has been largely overlooked. Our experiments on CIFAR and CelebA datasets show that compositional changes in the holdout set can substantially influence fairness metrics. Imbalanced holdout sets exacerbate existing disparities, while balanced holdouts can mitigate issues introduced by imbalanced training data. These findings underline the necessity of constructing holdout sets that are both diverse and representative.
- Abstract(参考訳): 近年,機械学習モデルの速度,精度,公平性を向上する可能性から,学習中にホールドアウトセットを利用するトランスダクティブ学習法が人気を集めている。
それにもかかわらず、ホールドアウト集合の構成そのもの、特に敏感な部分群のバランスは、ほとんど見過ごされてきている。
CIFARとCelebAデータセットを用いた実験により、ホールドアウトセットの組成変化がフェアネス指標に大きく影響することが示された。
不均衡なホールトアウトセットは、既存の格差を悪化させ、バランスの取れたホールトアウトは、不均衡なトレーニングデータによってもたらされる問題を緩和する。
これらの知見は,多様かつ代表的であるホールドアウトセットの構築の必要性を浮き彫りにしている。
関連論文リスト
- Gradient Reweighting: Towards Imbalanced Class-Incremental Learning [8.438092346233054]
CIL(Class-Incremental Learning)は、非定常データから新しいクラスを継続的に認識するためにモデルを訓練する。
CILの大きな課題は、非一様分布を特徴とする実世界のデータに適用する場合である。
この二重不均衡問題により、FC層に偏りのある勾配更新が生じ、CILの過度/過度な適合と破滅的な忘れが引き起こされる。
論文 参考訳(メタデータ) (2024-02-28T18:08:03Z) - Phased Progressive Learning with Coupling-Regulation-Imbalance Loss for
Imbalanced Classification [11.673344551762822]
ディープニューラルネットワークは、一般に、異なるクラス間の量不均衡と分類困難の不均衡に苦しむデータセットで性能が良くない。
表象学習から上位クラス化学習への学習強調を円滑に伝達する段階的な進行学習スケジュールが提案された。
私たちのコードはまもなくオープンソースになります。
論文 参考訳(メタデータ) (2022-05-24T14:46:39Z) - Deep Reinforcement Learning for Multi-class Imbalanced Training [64.9100301614621]
我々は、極めて不均衡なデータセットをトレーニングするために、強化学習に基づく不均衡な分類フレームワークを導入する。
特注報酬関数とエピソード学習手順を定式化し、特にマルチクラス不均衡トレーニングを扱えるようにした。
実世界の臨床ケーススタディを用いて,提案手法が現状の非バランス学習法より優れていることを示す。
論文 参考訳(メタデータ) (2022-05-24T13:39:59Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
本稿では,FAIRIFという2段階の学習アルゴリズムを提案する。
サンプル重みが計算される再重み付きデータセットの損失を最小限に抑える。
FAIRIFは、様々な種類のバイアスに対して、フェアネスとユーティリティのトレードオフを良くしたモデルが得られることを示す。
論文 参考訳(メタデータ) (2022-01-15T05:14:48Z) - Targeted Supervised Contrastive Learning for Long-Tailed Recognition [50.24044608432207]
実世界のデータは、しばしば重いクラス不均衡の長い尾の分布を示す。
教師付きコントラスト学習は性能向上に寄与するが、過去のベースラインは不均衡なデータ分布によってもたらされる不均一さに悩まされている。
我々は,超球面上の特徴分布の均一性を改善するための教師付きコントラスト学習(TSC)を提案する。
論文 参考訳(メタデータ) (2021-11-27T22:40:10Z) - Counterfactual Representation Learning with Balancing Weights [74.67296491574318]
観察データによる因果推論の鍵は、それぞれの治療タイプに関連する予測的特徴のバランスを達成することである。
近年の文献では、この目標を達成するために表現学習を探求している。
因果効果を柔軟かつスケーラブルかつ正確に推定するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-10-23T19:06:03Z) - Addressing Class Imbalance in Federated Learning [10.970632986559547]
Federated Learning(FL)は、ローカルクライアントデバイス上の分散データをトレーニングするための有望なアプローチである。
本研究では,FLラウンド毎のトレーニングデータの組成を推定し,その影響を軽減するために新しい損失関数 textbfRatio Loss を設計する。
論文 参考訳(メタデータ) (2020-08-14T07:28:08Z) - Long-Tailed Recognition Using Class-Balanced Experts [128.73438243408393]
本稿では,多様な分類器の強度を組み合わせたクラスバランスの専門家のアンサンブルを提案する。
私たちのクラスバランスの専門家のアンサンブルは、最先端に近い結果に到達し、長い尾の認識のための2つのベンチマークで新たな最先端のアンサンブルを確立します。
論文 参考訳(メタデータ) (2020-04-07T20:57:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。