Systematic literature review on forecasting and prediction of technical debt evolution
- URL: http://arxiv.org/abs/2406.12026v1
- Date: Mon, 17 Jun 2024 18:50:37 GMT
- Title: Systematic literature review on forecasting and prediction of technical debt evolution
- Authors: Adekunle Ajibode, Yvon Apedo, Temitope Ajibode,
- Abstract summary: Technical debt (TD) refers to the additional costs incurred due to compromises in software quality.
This study aims to explore existing knowledge in software engineering to gain insights into approaches proposed in research and industry.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Context: Technical debt (TD) refers to the additional costs incurred due to compromises in software quality, providing short-term advantages during development but potentially compromising long-term quality. Accurate TD forecasting and prediction are vital for informed software maintenance and proactive management. However, this research area lacks comprehensive documentation on the available forecasting techniques. Objective: This study aims to explore existing knowledge in software engineering to gain insights into approaches proposed in research and industry for forecasting TD evolution. Methods: To achieve this objective, we conducted a Systematic Literature Review encompassing 646 distinct papers published until 2023. Following established methodology in software engineering, we identified and included 14 primary studies for analysis. Result: Our analysis unveiled various approaches for TD evolution forecasting. Notably, random forest and temporal convolutional networks demonstrated superior performance compared to other methods based on the result from the primary studies. However, these approaches only address two of the fifteen identified TD types, specifically Code debt and Architecture debt, while disregarding the remaining types. Conclusion: Our findings indicate that research on TD evolution forecasting is still in its early stages, leaving numerous challenges unaddressed. Therefore, we propose several research directions that require further investigation to bridge the existing gaps. Keywords: Systematic literature review, Technical debt, Technical debt prediction, Technical debt forecasting, Technical debt metrics
Related papers
- Improving the detection of technical debt in Java source code with an enriched dataset [12.07607688189035]
Technical debt (TD) is the additional work and costs that emerge when developers opt for a quick and easy solution to a problem.
Recent research has focused on detecting Self-Admitted Technical Debts (SATDs) by analyzing comments embedded in source code.
We curated the first ever dataset of TD identified by code comments, coupled with its associated source code.
arXiv Detail & Related papers (2024-11-08T10:12:33Z) - Human Action Anticipation: A Survey [86.415721659234]
The literature on behavior prediction spans various tasks, including action anticipation, activity forecasting, intent prediction, goal prediction, and so on.
Our survey aims to tie together this fragmented literature, covering recent technical innovations as well as the development of new large-scale datasets for model training and evaluation.
arXiv Detail & Related papers (2024-10-17T21:37:40Z) - A Comprehensive Survey on Evidential Deep Learning and Its Applications [64.83473301188138]
Evidential Deep Learning (EDL) provides reliable uncertainty estimation with minimal additional computation in a single forward pass.
We first delve into the theoretical foundation of EDL, the subjective logic theory, and discuss its distinctions from other uncertainty estimation frameworks.
We elaborate on its extensive applications across various machine learning paradigms and downstream tasks.
arXiv Detail & Related papers (2024-09-07T05:55:06Z) - Evaluating Time-Dependent Methods and Seasonal Effects in Code Technical Debt Prediction [6.616501747443831]
This study aims to evaluate the impact of considering time-dependent techniques as well as seasonal effects in temporal data.
We trained 11 prediction models using the commit history of 31 open-source projects developed with Java.
arXiv Detail & Related papers (2024-08-15T11:39:58Z) - A Comprehensive Survey on Underwater Image Enhancement Based on Deep Learning [51.7818820745221]
Underwater image enhancement (UIE) presents a significant challenge within computer vision research.
Despite the development of numerous UIE algorithms, a thorough and systematic review is still absent.
arXiv Detail & Related papers (2024-05-30T04:46:40Z) - Self-Admitted Technical Debt Detection Approaches: A Decade Systematic Review [5.670597842524448]
Technical debt (TD) represents the long-term costs associated with suboptimal design or code decisions in software development.
Self-Admitted Technical Debt (SATD) occurs when developers explicitly acknowledge these trade-offs.
automated detection of SATD has become an increasingly important research area.
arXiv Detail & Related papers (2023-12-19T12:01:13Z) - A Survey on Service Route and Time Prediction in Instant Delivery:
Taxonomy, Progress, and Prospects [58.746820564288846]
Route&Time Prediction (RTP) aims to estimate the future service route as well as the arrival time of a worker.
Despite a plethora of algorithms developed to date, there is no systematic, comprehensive survey to guide researchers in this domain.
We categorize these methods based on three criteria: (i) type of task, subdivided into only-route prediction, only-time prediction, and joint route&time prediction; (ii) model architecture, which encompasses sequence-based and graph-based models; and (iii) learning paradigm, including Supervised Learning (SL) and Deep Reinforcement
arXiv Detail & Related papers (2023-09-03T14:43:33Z) - Multimodal Explainable Artificial Intelligence: A Comprehensive Review of Methodological Advances and Future Research Directions [2.35574869517894]
This study focuses on analyzing the recent advances in the area of Multimodal XAI (MXAI)
MXAI comprises methods that involve multiple modalities in the primary prediction and explanation tasks.
arXiv Detail & Related papers (2023-06-09T07:51:50Z) - Deep Learning Schema-based Event Extraction: Literature Review and
Current Trends [60.29289298349322]
Event extraction technology based on deep learning has become a research hotspot.
This paper fills the gap by reviewing the state-of-the-art approaches, focusing on deep learning-based models.
arXiv Detail & Related papers (2021-07-05T16:32:45Z) - From Goals, Waypoints & Paths To Long Term Human Trajectory Forecasting [54.273455592965355]
Uncertainty in future trajectories stems from two sources: (a) sources known to the agent but unknown to the model, such as long term goals and (b)sources that are unknown to both the agent & the model, such as intent of other agents & irreducible randomness indecisions.
We model the epistemic un-certainty through multimodality in long term goals and the aleatoric uncertainty through multimodality in waypoints& paths.
To exemplify this dichotomy, we also propose a novel long term trajectory forecasting setting, with prediction horizons upto a minute, an order of magnitude longer than prior works.
arXiv Detail & Related papers (2020-12-02T21:01:29Z) - Forecasting AI Progress: A Research Agenda [0.41998444721319206]
This paper describes the development of a research agenda for forecasting AI progress.
It uses the Delphi technique to elicit and aggregate experts' opinions on what questions and methods to prioritize.
Experts indicated that a wide variety of methods should be considered for forecasting AI progress.
arXiv Detail & Related papers (2020-08-04T21:46:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.