Socially Interactive Agents for Robotic Neurorehabilitation Training: Conceptualization and Proof-of-concept Study
- URL: http://arxiv.org/abs/2406.12035v1
- Date: Mon, 17 Jun 2024 19:07:05 GMT
- Title: Socially Interactive Agents for Robotic Neurorehabilitation Training: Conceptualization and Proof-of-concept Study
- Authors: Rhythm Arora, Pooja Prajod, Matteo Lavit Nicora, Daniele Panzeri, Giovanni Tauro, Rocco Vertechy, Matteo Malosio, Elisabeth André, Patrick Gebhard,
- Abstract summary: We introduce an AI-based system aimed at delivering personalized, out-of-hospital assistance during neurorehabilitation training.
With the assistance of a professional, the envisioned system is designed to accommodate the unique rehabilitation requirements of an individual patient.
Our approach involves the integration of an interactive socially-aware virtual agent into a neurorehabilitation robotic framework.
- Score: 7.365940126473552
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Individuals with diverse motor abilities often benefit from intensive and specialized rehabilitation therapies aimed at enhancing their functional recovery. Nevertheless, the challenge lies in the restricted availability of neurorehabilitation professionals, hindering the effective delivery of the necessary level of care. Robotic devices hold great potential in reducing the dependence on medical personnel during therapy but, at the same time, they generally lack the crucial human interaction and motivation that traditional in-person sessions provide. To bridge this gap, we introduce an AI-based system aimed at delivering personalized, out-of-hospital assistance during neurorehabilitation training. This system includes a rehabilitation training device, affective signal classification models, training exercises, and a socially interactive agent as the user interface. With the assistance of a professional, the envisioned system is designed to be tailored to accommodate the unique rehabilitation requirements of an individual patient. Conceptually, after a preliminary setup and instruction phase, the patient is equipped to continue their rehabilitation regimen autonomously in the comfort of their home, facilitated by a socially interactive agent functioning as a virtual coaching assistant. Our approach involves the integration of an interactive socially-aware virtual agent into a neurorehabilitation robotic framework, with the primary objective of recreating the social aspects inherent to in-person rehabilitation sessions. We also conducted a feasibility study to test the framework with healthy patients. The results of our preliminary investigation indicate that participants demonstrated a propensity to adapt to the system. Notably, the presence of the interactive agent during the proposed exercises did not act as a source of distraction; instead, it positively impacted users' engagement.
Related papers
- Design, Development, and Evaluation of an Interactive Personalized
Social Robot to Monitor and Coach Post-Stroke Rehabilitation Exercises [68.37238218842089]
We develop an interactive social robot exercise coaching system for personalized rehabilitation.
This system integrates a neural network model with a rule-based model to automatically monitor and assess patients' rehabilitation exercises.
Our system can adapt to new participants and achieved 0.81 average performance to assess their exercises, which is comparable to the experts' agreement level.
arXiv Detail & Related papers (2023-05-12T17:37:04Z) - Automated Fidelity Assessment for Strategy Training in Inpatient
Rehabilitation using Natural Language Processing [53.096237570992294]
Strategy training is a rehabilitation approach that teaches skills to reduce disability among those with cognitive impairments following a stroke.
Standardized fidelity assessment is used to measure adherence to treatment principles.
We developed a rule-based NLP algorithm, a long-short term memory (LSTM) model, and a bidirectional encoder representation from transformers (BERT) model for this task.
arXiv Detail & Related papers (2022-09-14T15:33:30Z) - Employing Socially Interactive Agents for Robotic Neurorehabilitation
Training [0.2886273197127056]
We present a technological approach for a novel robotic neurorehabilitation training system.
It relies on a combination of a rehabilitation device, signal classification methods, supervised machine learning models for training adaptation, training exercises, and socially interactive agents as a user interface.
arXiv Detail & Related papers (2022-06-03T14:17:37Z) - Personalized Rehabilitation Robotics based on Online Learning Control [62.6606062732021]
We propose a novel online learning control architecture, which is able to personalize the control force at run time to each individual user.
We evaluate our method in an experimental user study, where the learning controller is shown to provide personalized control, while also obtaining safe interaction forces.
arXiv Detail & Related papers (2021-10-01T15:28:44Z) - Enabling AI and Robotic Coaches for Physical Rehabilitation Therapy:
Iterative Design and Evaluation with Therapists and Post-Stroke Survivors [66.07833535962762]
Artificial intelligence (AI) and robotic coaches promise the improved engagement of patients on rehabilitation exercises through social interaction.
Previous work explored the potential of automatically monitoring exercises for AI and robotic coaches, but deployment remains a challenge.
We present our efforts on eliciting the detailed design specifications on how AI and robotic coaches could interact with and guide patient's exercises.
arXiv Detail & Related papers (2021-06-15T22:06:39Z) - Designing a Mobile Social and Vocational Reintegration Assistant for
Burn-out Outpatient Treatment [0.4899818550820576]
This paper presents our mobile Social Agent EmmA in the role of a vocational reintegration assistant for burn-out outpatient treatment.
We employ a real-time social signal interpretation together with a computational simulation of emotion regulation that influences the agent's social behavior.
arXiv Detail & Related papers (2020-12-15T12:41:56Z) - Designing Personalized Interaction of a Socially Assistive Robot for
Stroke Rehabilitation Therapy [64.52563354823711]
The research of a socially assistive robot has a potential to augment and assist physical therapy sessions for patients with neurological and musculoskeletal problems.
This paper presents an interactive approach of a socially assistive robot that can dynamically select kinematic features of assessment on individual patient's exercises to predict the quality of motion.
arXiv Detail & Related papers (2020-07-13T16:12:05Z) - A Review of Computational Approaches for Evaluation of Rehabilitation
Exercises [58.720142291102135]
This paper reviews computational approaches for evaluating patient performance in rehabilitation programs using motion capture systems.
The reviewed computational methods for exercise evaluation are grouped into three main categories: discrete movement score, rule-based, and template-based approaches.
arXiv Detail & Related papers (2020-02-29T22:18:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.