MedCalc-Bench: Evaluating Large Language Models for Medical Calculations
- URL: http://arxiv.org/abs/2406.12036v4
- Date: Sun, 30 Jun 2024 15:12:10 GMT
- Title: MedCalc-Bench: Evaluating Large Language Models for Medical Calculations
- Authors: Nikhil Khandekar, Qiao Jin, Guangzhi Xiong, Soren Dunn, Serina S Applebaum, Zain Anwar, Maame Sarfo-Gyamfi, Conrad W Safranek, Abid A Anwar, Andrew Zhang, Aidan Gilson, Maxwell B Singer, Amisha Dave, Andrew Taylor, Aidong Zhang, Qingyu Chen, Zhiyong Lu,
- Abstract summary: Current benchmarks for evaluating large language models (LLMs) in medicine are primarily focused on question-answering involving domain knowledge and descriptive reasoning.
We propose MedCalc-Bench, a first-of-its-kind dataset focused on evaluating the medical calculation capability of LLMs.
- Score: 18.8552481902506
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: As opposed to evaluating computation and logic-based reasoning, current benchmarks for evaluating large language models (LLMs) in medicine are primarily focused on question-answering involving domain knowledge and descriptive reasoning. While such qualitative capabilities are vital to medical diagnosis, in real-world scenarios, doctors frequently use clinical calculators that follow quantitative equations and rule-based reasoning paradigms for evidence-based decision support. To this end, we propose MedCalc-Bench, a first-of-its-kind dataset focused on evaluating the medical calculation capability of LLMs. MedCalc-Bench contains an evaluation set of over 1000 manually reviewed instances from 55 different medical calculation tasks. Each instance in MedCalc-Bench consists of a patient note, a question requesting to compute a specific medical value, a ground truth answer, and a step-by-step explanation showing how the answer is obtained. While our evaluation results show the potential of LLMs in this area, none of them are effective enough for clinical settings. Common issues include extracting the incorrect entities, not using the correct equation or rules for a calculation task, or incorrectly performing the arithmetic for the computation. We hope our study highlights the quantitative knowledge and reasoning gaps in LLMs within medical settings, encouraging future improvements of LLMs for various clinical calculation tasks.
Related papers
- MeNTi: Bridging Medical Calculator and LLM Agent with Nested Tool Calling [12.236137157144965]
We introduce MeNTi, a universal agent architecture for Large Language Models (LLMs)
MeNTi integrates a specialized medical toolkit and employs meta-tool and nested calling mechanisms to enhance LLM tool utilization.
To assess the capabilities of LLMs for quantitative assessment throughout the clinical process of calculator scenarios, we introduce CalcQA.
arXiv Detail & Related papers (2024-10-17T14:46:22Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - CliMedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models in Clinical Scenarios [50.032101237019205]
CliMedBench is a comprehensive benchmark with 14 expert-guided core clinical scenarios.
The reliability of this benchmark has been confirmed in several ways.
arXiv Detail & Related papers (2024-10-04T15:15:36Z) - Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
We present MedS-Bench, a benchmark designed to evaluate the performance of large language models (LLMs) in clinical contexts.
MedS-Bench spans 11 high-level clinical tasks, including clinical report summarization, treatment recommendations, diagnosis, named entity recognition, and medical concept explanation.
MedS-Ins comprises 58 medically oriented language corpora, totaling 13.5 million samples across 122 tasks.
arXiv Detail & Related papers (2024-08-22T17:01:34Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals.
GMAI-MMBench is the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date.
It is constructed from 284 datasets across 38 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format.
arXiv Detail & Related papers (2024-08-06T17:59:21Z) - MedBench: A Comprehensive, Standardized, and Reliable Benchmarking System for Evaluating Chinese Medical Large Language Models [55.215061531495984]
"MedBench" is a comprehensive, standardized, and reliable benchmarking system for Chinese medical LLM.
First, MedBench assembles the largest evaluation dataset (300,901 questions) to cover 43 clinical specialties.
Third, MedBench implements dynamic evaluation mechanisms to prevent shortcut learning and answer remembering.
arXiv Detail & Related papers (2024-06-24T02:25:48Z) - MedExQA: Medical Question Answering Benchmark with Multiple Explanations [2.2246416434538308]
This paper introduces MedExQA, a novel benchmark in medical question-answering to evaluate large language models' (LLMs) understanding of medical knowledge through explanations.
By constructing datasets across five distinct medical specialties, we address a major gap in current medical QA benchmarks.
Our work highlights the importance of explainability in medical LLMs, proposes an effective methodology for evaluating models beyond classification accuracy, and sheds light on one specific domain, speech language pathology.
arXiv Detail & Related papers (2024-06-10T14:47:04Z) - Performance of large language models in numerical vs. semantic medical knowledge: Benchmarking on evidence-based Q&As [1.0034156461900003]
Large language models (LLMs) show promising results in many aspects of language-based clinical practice.
We used a comprehensive medical knowledge graph (encompassed data from more than 50,00 peer-reviewed articles) and created the "EBMQA"
We benchmarked this dataset using more than 24,500 questions on two state-of-the-art LLMs: Chat-GPT4 and Claude3-Opus.
We found that both LLMs excelled more in semantic than numerical QAs, with Claude3 surpassing GPT4 in numerical QAs.
arXiv Detail & Related papers (2024-06-06T08:41:46Z) - MedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large
Language Models [56.36916128631784]
We introduce MedBench, a comprehensive benchmark for the Chinese medical domain.
This benchmark is composed of four key components: the Chinese Medical Licensing Examination, the Resident Standardization Training Examination, and real-world clinic cases.
We perform extensive experiments and conduct an in-depth analysis from diverse perspectives, which culminate in the following findings.
arXiv Detail & Related papers (2023-12-20T07:01:49Z) - Large Language Models for Biomedical Knowledge Graph Construction:
Information extraction from EMR notes [0.0]
We propose an end-to-end machine learning solution based on large language models (LLMs)
The entities used in the KG construction process are diseases, factors, treatments, as well as manifestations that coexist with the patient while experiencing the disease.
The application of the proposed methodology is demonstrated on age-related macular degeneration.
arXiv Detail & Related papers (2023-01-29T15:52:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.