Performance of large language models in numerical vs. semantic medical knowledge: Benchmarking on evidence-based Q&As
- URL: http://arxiv.org/abs/2406.03855v3
- Date: Wed, 24 Jul 2024 06:39:15 GMT
- Title: Performance of large language models in numerical vs. semantic medical knowledge: Benchmarking on evidence-based Q&As
- Authors: Eden Avnat, Michal Levy, Daniel Herstain, Elia Yanko, Daniel Ben Joya, Michal Tzuchman Katz, Dafna Eshel, Sahar Laros, Yael Dagan, Shahar Barami, Joseph Mermelstein, Shahar Ovadia, Noam Shomron, Varda Shalev, Raja-Elie E. Abdulnour,
- Abstract summary: Large language models (LLMs) show promising results in many aspects of language-based clinical practice.
We used a comprehensive medical knowledge graph (encompassed data from more than 50,00 peer-reviewed articles) and created the "EBMQA"
We benchmarked this dataset using more than 24,500 questions on two state-of-the-art LLMs: Chat-GPT4 and Claude3-Opus.
We found that both LLMs excelled more in semantic than numerical QAs, with Claude3 surpassing GPT4 in numerical QAs.
- Score: 1.0034156461900003
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clinical problem-solving requires processing of semantic medical knowledge such as illness scripts and numerical medical knowledge of diagnostic tests for evidence-based decision-making. As large language models (LLMs) show promising results in many aspects of language-based clinical practice, their ability to generate non-language evidence-based answers to clinical questions is inherently limited by tokenization. Therefore, we evaluated LLMs' performance on two question types: numeric (correlating findings) and semantic (differentiating entities) while examining differences within and between LLMs in medical aspects and comparing their performance to humans. To generate straightforward multi-choice questions and answers (QAs) based on evidence-based medicine (EBM), we used a comprehensive medical knowledge graph (encompassed data from more than 50,00 peer-reviewed articles) and created the "EBMQA". EBMQA contains 105,000 QAs labeled with medical and non-medical topics and classified into numerical or semantic questions. We benchmarked this dataset using more than 24,500 QAs on two state-of-the-art LLMs: Chat-GPT4 and Claude3-Opus. We evaluated the LLMs accuracy on semantic and numerical question types and according to sub-labeled topics. For validation, six medical experts were tested on 100 numerical EBMQA questions. We found that both LLMs excelled more in semantic than numerical QAs, with Claude3 surpassing GPT4 in numerical QAs. However, both LLMs showed inter and intra gaps in different medical aspects and remained inferior to humans. Thus, their medical advice should be addressed carefully.
Related papers
- CliMedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models in Clinical Scenarios [50.032101237019205]
CliMedBench is a comprehensive benchmark with 14 expert-guided core clinical scenarios.
The reliability of this benchmark has been confirmed in several ways.
arXiv Detail & Related papers (2024-10-04T15:15:36Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals.
GMAI-MMBench is the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date.
It is constructed from 284 datasets across 38 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format.
arXiv Detail & Related papers (2024-08-06T17:59:21Z) - MedCalc-Bench: Evaluating Large Language Models for Medical Calculations [18.8552481902506]
Current benchmarks for evaluating large language models (LLMs) in medicine are primarily focused on question-answering involving domain knowledge and descriptive reasoning.
We propose MedCalc-Bench, a first-of-its-kind dataset focused on evaluating the medical calculation capability of LLMs.
arXiv Detail & Related papers (2024-06-17T19:07:21Z) - MedExQA: Medical Question Answering Benchmark with Multiple Explanations [2.2246416434538308]
This paper introduces MedExQA, a novel benchmark in medical question-answering to evaluate large language models' (LLMs) understanding of medical knowledge through explanations.
By constructing datasets across five distinct medical specialties, we address a major gap in current medical QA benchmarks.
Our work highlights the importance of explainability in medical LLMs, proposes an effective methodology for evaluating models beyond classification accuracy, and sheds light on one specific domain, speech language pathology.
arXiv Detail & Related papers (2024-06-10T14:47:04Z) - MultifacetEval: Multifaceted Evaluation to Probe LLMs in Mastering Medical Knowledge [4.8004472307210255]
Large language models (LLMs) have excelled across domains, delivering notable performance on medical evaluation benchmarks.
However, there still exists a significant gap between the reported performance and the practical effectiveness in real-world medical scenarios.
We develop a novel evaluation framework MultifacetEval to examine the degree and coverage of LLMs in encoding and mastering medical knowledge.
arXiv Detail & Related papers (2024-06-05T04:15:07Z) - Multiple Choice Questions and Large Languages Models: A Case Study with Fictional Medical Data [3.471944921180245]
We developed a fictional medical benchmark focused on a non-existent gland, the Glianorex.
This approach allowed us to isolate the knowledge of the LLM from its test-taking abilities.
We evaluated various open-source, proprietary, and domain-specific LLMs using these questions in a zero-shot setting.
arXiv Detail & Related papers (2024-06-04T15:08:56Z) - Asclepius: A Spectrum Evaluation Benchmark for Medical Multi-Modal Large
Language Models [59.60384461302662]
We introduce Asclepius, a novel benchmark for evaluating Medical Multi-Modal Large Language Models (Med-MLLMs)
Asclepius rigorously and comprehensively assesses model capability in terms of distinct medical specialties and different diagnostic capacities.
We also provide an in-depth analysis of 6 Med-MLLMs and compare them with 5 human specialists.
arXiv Detail & Related papers (2024-02-17T08:04:23Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - MedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large
Language Models [56.36916128631784]
We introduce MedBench, a comprehensive benchmark for the Chinese medical domain.
This benchmark is composed of four key components: the Chinese Medical Licensing Examination, the Resident Standardization Training Examination, and real-world clinic cases.
We perform extensive experiments and conduct an in-depth analysis from diverse perspectives, which culminate in the following findings.
arXiv Detail & Related papers (2023-12-20T07:01:49Z) - Adapted Large Language Models Can Outperform Medical Experts in Clinical Text Summarization [8.456700096020601]
Large language models (LLMs) have shown promise in natural language processing (NLP), but their effectiveness on a diverse range of clinical summarization tasks remains unproven.
In this study, we apply adaptation methods to eight LLMs, spanning four distinct clinical summarization tasks.
A clinical reader study with ten physicians evaluates summary, completeness, correctness, and conciseness; in a majority of cases, summaries from our best adapted LLMs are either equivalent (45%) or superior (36%) compared to summaries from medical experts.
arXiv Detail & Related papers (2023-09-14T05:15:01Z) - Large Language Models Leverage External Knowledge to Extend Clinical
Insight Beyond Language Boundaries [48.48630043740588]
Large Language Models (LLMs) such as ChatGPT and Med-PaLM have excelled in various medical question-answering tasks.
We develop a novel in-context learning framework to enhance their performance.
arXiv Detail & Related papers (2023-05-17T12:31:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.