Grade Score: Quantifying LLM Performance in Option Selection
- URL: http://arxiv.org/abs/2406.12043v2
- Date: Thu, 20 Jun 2024 21:58:07 GMT
- Title: Grade Score: Quantifying LLM Performance in Option Selection
- Authors: Dmitri Iourovitski,
- Abstract summary: "Grade Score" is a novel metric designed to evaluate the consistency and fairness of Large Language Models (LLMs)
The Grade Score combines Entropy, which measures order bias, and Mode Frequency, which assesses choice stability.
The study explores techniques such as prompt engineering and option sampling strategies to optimize the Grade Score.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study introduces the "Grade Score", a novel metric designed to evaluate the consistency and fairness of Large Language Models (LLMs) when used as multiple-choice judges with respect to order bias and choice consistency. The Grade Score combines Entropy, which measures order bias, and Mode Frequency, which assesses choice stability, offering insights into LLMs' reliability and impartiality. The study explores techniques such as prompt engineering and option sampling strategies to optimize the Grade Score, demonstrating their effectiveness in enhancing LLMs' performance. Results showcase varying performances among LLMs with respect to prompts and highlight the positive impact of including irrelevant options. The study also identifies an emergent behavior in instruction-following models, where they adapt to instructions targeting specific biases, demonstrating their adaptability. The Grade Score facilitates comparisons between LLMs and encourages ongoing research towards optimizing their decision-making processes, with potential implications for improving their reliability and fairness in various applications. All code is available on GitHub https://github.com/IoDmitri/GradeLab
Related papers
- Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
Despite their excellence in many domains, potential issues are under-explored, undermining their reliability and the scope of their utility.
We identify 12 key potential biases and propose a new automated bias quantification framework-CALM- which quantifies and analyzes each type of bias in LLM-as-a-Judge.
Our work highlights the need for stakeholders to address these issues and remind users to exercise caution in LLM-as-a-Judge applications.
arXiv Detail & Related papers (2024-10-03T17:53:30Z) - In-Context Learning with Reinforcement Learning for Incomplete Utterance Rewriting [33.89176174108559]
In-context learning of large language models (LLMs) makes predictions only based on instructions augmented with a few examples.
Existing example selection methods for ICL utilize sparse or dense retrievers and derive effective performance.
We propose our policy-based reinforcement learning framework for example selection (RLS), which consists of a language model (LM) selector and an LLM generator.
arXiv Detail & Related papers (2024-08-23T12:32:12Z) - Fairer Preferences Elicit Improved Human-Aligned Large Language Model Judgments [41.25558612970942]
We show that large language models (LLMs) exhibit preference biases and worrying sensitivity to prompt designs.
Motivated by this phenomenon, we propose an automatic Zero-shot Evaluation-oriented Prompt Optimization framework, ZEPO.
arXiv Detail & Related papers (2024-06-17T09:48:53Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Large Language Models are Biased Reinforcement Learners [0.0]
We show that large language models (LLMs) exhibit behavioral signatures of a relative value bias.
Computational cognitive modeling reveals that LLM behavior is well-described by a simple RL algorithm.
arXiv Detail & Related papers (2024-05-19T01:43:52Z) - Few-Shot Fairness: Unveiling LLM's Potential for Fairness-Aware
Classification [7.696798306913988]
We introduce a framework outlining fairness regulations aligned with various fairness definitions.
We explore the configuration for in-context learning and the procedure for selecting in-context demonstrations using RAG.
Experiments conducted with different LLMs indicate that GPT-4 delivers superior results in terms of both accuracy and fairness compared to other models.
arXiv Detail & Related papers (2024-02-28T17:29:27Z) - Learning Fair Ranking Policies via Differentiable Optimization of
Ordered Weighted Averages [55.04219793298687]
This paper shows how efficiently-solvable fair ranking models can be integrated into the training loop of Learning to Rank.
In particular, this paper is the first to show how to backpropagate through constrained optimizations of OWA objectives, enabling their use in integrated prediction and decision models.
arXiv Detail & Related papers (2024-02-07T20:53:53Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
We reformulate open-ended generation tasks into token-level prediction tasks.
We instruct an LLM to self-evaluate its answers.
We benchmark a range of scoring methods based on self-evaluation.
arXiv Detail & Related papers (2023-12-14T19:09:22Z) - Adaptation with Self-Evaluation to Improve Selective Prediction in LLMs [56.526095828316386]
We propose a novel framework for adaptation with self-evaluation to improve the selective prediction performance of large language models (LLMs)
We evaluate our method on a variety of question-answering (QA) datasets and show that it outperforms state-of-the-art selective prediction methods.
arXiv Detail & Related papers (2023-10-18T03:34:59Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.