Large Language Models are Biased Reinforcement Learners
- URL: http://arxiv.org/abs/2405.11422v1
- Date: Sun, 19 May 2024 01:43:52 GMT
- Title: Large Language Models are Biased Reinforcement Learners
- Authors: William M. Hayes, Nicolas Yax, Stefano Palminteri,
- Abstract summary: We show that large language models (LLMs) exhibit behavioral signatures of a relative value bias.
Computational cognitive modeling reveals that LLM behavior is well-described by a simple RL algorithm.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In-context learning enables large language models (LLMs) to perform a variety of tasks, including learning to make reward-maximizing choices in simple bandit tasks. Given their potential use as (autonomous) decision-making agents, it is important to understand how these models perform such reinforcement learning (RL) tasks and the extent to which they are susceptible to biases. Motivated by the fact that, in humans, it has been widely documented that the value of an outcome depends on how it compares to other local outcomes, the present study focuses on whether similar value encoding biases apply to how LLMs encode rewarding outcomes. Results from experiments with multiple bandit tasks and models show that LLMs exhibit behavioral signatures of a relative value bias. Adding explicit outcome comparisons to the prompt produces opposing effects on performance, enhancing maximization in trained choice sets but impairing generalization to new choice sets. Computational cognitive modeling reveals that LLM behavior is well-described by a simple RL algorithm that incorporates relative values at the outcome encoding stage. Lastly, we present preliminary evidence that the observed biases are not limited to fine-tuned LLMs, and that relative value processing is detectable in the final hidden layer activations of a raw, pretrained model. These findings have important implications for the use of LLMs in decision-making applications.
Related papers
- LLMs are Biased Evaluators But Not Biased for Retrieval Augmented Generation [28.61326111959728]
Large language models (LLMs) exhibit significant biases in evaluation tasks, particularly in preferentially rating and favoring self-generated content.
Our study addresses this knowledge gap by simulating two critical phases of the retrieval-augmented generation (RAG) framework.
Contrary to previous findings, our results reveal no significant self-preference effect in RAG frameworks.
arXiv Detail & Related papers (2024-10-28T08:32:09Z) - Aggregation Artifacts in Subjective Tasks Collapse Large Language Models' Posteriors [74.04775677110179]
In-context Learning (ICL) has become the primary method for performing natural language tasks with Large Language Models (LLMs)
In this work, we examine whether this is the result of the aggregation used in corresponding datasets, where trying to combine low-agreement, disparate annotations might lead to annotation artifacts that create detrimental noise in the prompt.
Our results indicate that aggregation is a confounding factor in the modeling of subjective tasks, and advocate focusing on modeling individuals instead.
arXiv Detail & Related papers (2024-10-17T17:16:00Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - The Good, The Bad, and The Greedy: Evaluation of LLMs Should Not Ignore Non-Determinism [39.392450788666814]
Current evaluations of large language models (LLMs) often overlook non-determinism.
greedy decoding generally outperforms sampling methods for most evaluated tasks.
Smaller LLMs can match or surpass larger models such as GPT-4-Turbo.
arXiv Detail & Related papers (2024-07-15T06:12:17Z) - Through the Thicket: A Study of Number-Oriented LLMs derived from Random Forest Models [0.0]
Large Language Models (LLMs) have shown exceptional performance in text processing.
This paper proposes a novel approach to training LLMs using knowledge transfer from a random forest (RF) ensemble.
We generate outputs for fine-tuning, enhancing the model's ability to classify and explain its decisions.
arXiv Detail & Related papers (2024-06-07T13:31:51Z) - The Strong Pull of Prior Knowledge in Large Language Models and Its Impact on Emotion Recognition [74.04775677110179]
In-context Learning (ICL) has emerged as a powerful paradigm for performing natural language tasks with Large Language Models (LLM)
We show that LLMs have strong yet inconsistent priors in emotion recognition that ossify their predictions.
Our results suggest that caution is needed when using ICL with larger LLMs for affect-centered tasks outside their pre-training domain.
arXiv Detail & Related papers (2024-03-25T19:07:32Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z) - Exploring Value Biases: How LLMs Deviate Towards the Ideal [57.99044181599786]
Large-Language-Models (LLMs) are deployed in a wide range of applications, and their response has an increasing social impact.
We show that value bias is strong in LLMs across different categories, similar to the results found in human studies.
arXiv Detail & Related papers (2024-02-16T18:28:43Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data.
One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is.
This paper proposes the it least disagree metric (LDM) as the smallest probability of disagreement of the predicted label.
arXiv Detail & Related papers (2024-01-18T08:12:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.