Efficient particle-conserving brick-wall quantum circuits
- URL: http://arxiv.org/abs/2406.12130v1
- Date: Mon, 17 Jun 2024 22:40:18 GMT
- Title: Efficient particle-conserving brick-wall quantum circuits
- Authors: Babatunde M. Ayeni,
- Abstract summary: We show how to construct efficient particle-conserving gates using some practical ideas from symmetric tensor networks.
We numerically test the gates under the framework of brick-wall circuits.
In addition, we present an algorithm to extend brick-wall circuit with two-qubit nearest-neighbouring gates to non-nearest-neighbouring gates.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In variational quantum optimization with particle-conserving quantum circuits, it is often difficult to decide a priori which particle-conserving gates and circuit ansatzes would be most efficient for a given problem. This is important especially for noisy intermediate-scale quantum (NISQ) processors with limited resources. While this may be challenging to answer in general, deciding which particle-conserving gate would be most efficient is easier within a specified circuit ansatz. In this paper, we show how to construct efficient particle-conserving gates using some practical ideas from symmetric tensor networks. We derive different types of particle-conserving gates, including the generalized one. We numerically test the gates under the framework of brick-wall circuits. We show that the general particle-conserving gate with only four real parameters is generally best. In addition, we present an algorithm to extend brick-wall circuit with two-qubit nearest-neighbouring gates to non-nearest-neighbouring gates. We test and compare the efficiency of the circuits with Heisenberg spin chain with and without next-nearest-neighbouring interactions.
Related papers
- Convergence efficiency of quantum gates and circuits [1.3836910960262494]
"ironed gadget" model allows us to evaluate and compare the convergence efficiency of entangling gates and circuit architectures.
We provide analysis on gates with higher locality and found that the Margolus gate outperforms various other well-known gates.
arXiv Detail & Related papers (2024-11-07T17:40:19Z) - Decomposition Algorithm of an Arbitrary Pauli Exponential through a
Quantum Circuit [5.800032532382661]
We review the staircase algorithm to decompose the exponential of a generalized Pauli matrix.
We propose two alternative methods which offer more efficient quantum circuits.
arXiv Detail & Related papers (2023-05-08T16:05:27Z) - Optimizing the number of CNOT gates in one-dimensional nearest-neighbor
quantum Fourier transform circuit [0.0]
We construct a one-dimensional nearest-neighbor circuit of quantum Fourier transform (QFT)
It is found that our method reduces the number of CNOT gates by 60%.
Our results for the one-dimensional nearest-neighbor circuit can be applied to quantum amplitude estimation.
arXiv Detail & Related papers (2022-08-30T13:24:16Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
This work provides an extensive characterization of the learnability of the output distributions of local quantum circuits.
We show that for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=omega(log(n))$ Clifford circuits is hard.
arXiv Detail & Related papers (2022-07-07T08:04:15Z) - Approximate separation of quantum gates and separation experiments of
CNOT based on Particle Swarm Optimization algorithm [1.4821822452801385]
Ying conceived of using two or more small-capacity quantum computers to produce a larger-capacity quantum computing system.
Main obstacle is separating the quantum gates in the whole circuit to produce a tensor product of the local gates.
arXiv Detail & Related papers (2022-01-15T08:10:22Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Approaching the theoretical limit in quantum gate decomposition [0.0]
We propose a novel numerical approach to decompose general quantum programs in terms of single- and two-qubit quantum gates with a $CNOT$ gate count.
Our approach is based on a sequential optimization of parameters related to the single-qubit rotation gates involved in a pre-designed quantum circuit used for the decomposition.
arXiv Detail & Related papers (2021-09-14T15:36:22Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
We discuss the implementation of quantum algorithms for lattice $Phi4$ theory on circuit quantum electrodynamics (cQED) system.
The main advantage of qudit systems is that its multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates.
arXiv Detail & Related papers (2021-08-30T16:30:33Z) - Random quantum circuits anti-concentrate in log depth [118.18170052022323]
We study the number of gates needed for the distribution over measurement outcomes for typical circuit instances to be anti-concentrated.
Our definition of anti-concentration is that the expected collision probability is only a constant factor larger than if the distribution were uniform.
In both the case where the gates are nearest-neighbor on a 1D ring and the case where gates are long-range, we show $O(n log(n)) gates are also sufficient.
arXiv Detail & Related papers (2020-11-24T18:44:57Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.