Exploring the Impact of a Transformer's Latent Space Geometry on Downstream Task Performance
- URL: http://arxiv.org/abs/2406.12159v1
- Date: Tue, 18 Jun 2024 00:17:30 GMT
- Title: Exploring the Impact of a Transformer's Latent Space Geometry on Downstream Task Performance
- Authors: Anna C. Marbut, John W. Chandler, Travis J. Wheeler,
- Abstract summary: We propose that much of the benefit from pre-training may be captured by geometric characteristics of the latent space representations.
We find that there is a strong linear relationship between a measure of quantized cell density and average GLUE performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is generally thought that transformer-based large language models benefit from pre-training by learning generic linguistic knowledge that can be focused on a specific task during fine-tuning. However, we propose that much of the benefit from pre-training may be captured by geometric characteristics of the latent space representations, divorced from any specific linguistic knowledge. In this work we explore the relationship between GLUE benchmarking task performance and a variety of measures applied to the latent space resulting from BERT-type contextual language models. We find that there is a strong linear relationship between a measure of quantized cell density and average GLUE performance and that these measures may be predictive of otherwise surprising GLUE performance for several non-standard BERT-type models from the literature. These results may be suggestive of a strategy for decreasing pre-training requirements, wherein model initialization can be informed by the geometric characteristics of the model's latent space.
Related papers
- Aggregation Artifacts in Subjective Tasks Collapse Large Language Models' Posteriors [74.04775677110179]
In-context Learning (ICL) has become the primary method for performing natural language tasks with Large Language Models (LLMs)
In this work, we examine whether this is the result of the aggregation used in corresponding datasets, where trying to combine low-agreement, disparate annotations might lead to annotation artifacts that create detrimental noise in the prompt.
Our results indicate that aggregation is a confounding factor in the modeling of subjective tasks, and advocate focusing on modeling individuals instead.
arXiv Detail & Related papers (2024-10-17T17:16:00Z) - On Uncertainty In Natural Language Processing [2.5076643086429993]
This thesis studies how uncertainty in natural language processing can be characterized from a linguistic, statistical and neural perspective.
We propose a method for calibrated sampling in natural language generation based on non-exchangeable conformal prediction.
Lastly, we develop an approach to quantify confidence in large black-box language models using auxiliary predictors.
arXiv Detail & Related papers (2024-10-04T14:08:02Z) - Rethinking the Construction of Effective Metrics for Understanding the
Mechanisms of Pretrained Language Models [2.5863812709449543]
We propose a novel line to constructing metrics for understanding the mechanisms of pretrained language models.
Based on the experimental results, we propose a speculation regarding the working mechanism of BERT-like pretrained language models.
arXiv Detail & Related papers (2023-10-19T04:16:40Z) - The Geometry of Self-supervised Learning Models and its Impact on
Transfer Learning [62.601681746034956]
Self-supervised learning (SSL) has emerged as a desirable paradigm in computer vision.
We propose a data-driven geometric strategy to analyze different SSL models using local neighborhoods in the feature space induced by each.
arXiv Detail & Related papers (2022-09-18T18:15:38Z) - A global analysis of metrics used for measuring performance in natural
language processing [9.433496814327086]
We provide the first large-scale cross-sectional analysis of metrics used for measuring performance in natural language processing.
Results suggest that the large majority of natural language processing metrics currently used have properties that may result in an inadequate reflection of a models' performance.
arXiv Detail & Related papers (2022-04-25T11:41:50Z) - Exploring Dimensionality Reduction Techniques in Multilingual
Transformers [64.78260098263489]
This paper gives a comprehensive account of the impact of dimensional reduction techniques on the performance of state-of-the-art multilingual Siamese Transformers.
It shows that it is possible to achieve an average reduction in the number of dimensions of $91.58% pm 2.59%$ and $54.65% pm 32.20%$, respectively.
arXiv Detail & Related papers (2022-04-18T17:20:55Z) - A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis [90.24921443175514]
We focus on aspect-based sentiment analysis, which involves extracting aspect term, category, and predicting their corresponding polarities.
We propose to reformulate the extraction and prediction tasks into the sequence generation task, using a generative language model with unidirectional attention.
Our approach outperforms the previous state-of-the-art (based on BERT) on average performance by a large margins in few-shot and full-shot settings.
arXiv Detail & Related papers (2022-04-11T18:31:53Z) - Evaluating natural language processing models with generalization
metrics that do not need access to any training or testing data [66.11139091362078]
We provide the first model selection results on large pretrained Transformers from Huggingface using generalization metrics.
Despite their niche status, we find that metrics derived from the heavy-tail (HT) perspective are particularly useful in NLP tasks.
arXiv Detail & Related papers (2022-02-06T20:07:35Z) - Did the Cat Drink the Coffee? Challenging Transformers with Generalized
Event Knowledge [59.22170796793179]
Transformers Language Models (TLMs) were tested on a benchmark for the textitdynamic estimation of thematic fit
Our results show that TLMs can reach performances that are comparable to those achieved by SDM.
However, additional analysis consistently suggests that TLMs do not capture important aspects of event knowledge.
arXiv Detail & Related papers (2021-07-22T20:52:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.