Can Language Models Solve Olympiad Programming?
- URL: http://arxiv.org/abs/2404.10952v1
- Date: Tue, 16 Apr 2024 23:27:38 GMT
- Title: Can Language Models Solve Olympiad Programming?
- Authors: Quan Shi, Michael Tang, Karthik Narasimhan, Shunyu Yao,
- Abstract summary: This paper introduces the USACO benchmark with 307 problems from the USA Computing Olympiad.
We construct and test a range of LM inference methods for competitive programming for the first time.
We find GPT-4 only achieves a 8.7% pass@1 accuracy with zero-shot chain-of-thought prompting.
- Score: 40.54366634332231
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computing olympiads contain some of the most challenging problems for humans, requiring complex algorithmic reasoning, puzzle solving, in addition to generating efficient code. However, it has been understudied as a domain to evaluate language models (LMs). In this paper, we introduce the USACO benchmark with 307 problems from the USA Computing Olympiad, along with high-quality unit tests, reference code, and official analyses for each problem. These resources enable us to construct and test a range of LM inference methods for competitive programming for the first time. We find GPT-4 only achieves a 8.7% pass@1 accuracy with zero-shot chain-of-thought prompting, and our best inference method improves it to 20.2% using a combination of self-reflection and retrieval over episodic knowledge. However, this is far from solving the benchmark. To better understand the remaining challenges, we design a novel human-in-the-loop study and surprisingly find that a small number of targeted hints enable GPT-4 to solve 13 out of 15 problems previously unsolvable by any model and method. Our benchmark, baseline methods, quantitative results, and qualitative analysis serve as an initial step toward LMs with grounded, creative, and algorithmic reasoning.
Related papers
- LogicPro: Improving Complex Logical Reasoning via Program-Guided Learning [23.987059076950622]
We present a novel approach, called LogicPro, to enhance Large Language Models (LLMs) complex Logical reasoning through Program Examples.
We do this effectively by simply utilizing widely available algorithmic problems and their code solutions.
Our approach achieves significant improvements in multiple models for the BBH$27$, GSM8K, HellSwag, Logicqa, Reclor, and RTE datasets.
arXiv Detail & Related papers (2024-09-19T17:30:45Z) - Navigating the Labyrinth: Evaluating and Enhancing LLMs' Ability to Reason About Search Problems [59.72548591120689]
We introduce a new benchmark, SearchBench, containing 11 unique search problem types.
We show that even the most advanced LLMs fail to solve these problems end-to-end in text.
Instructing LLMs to generate code that solves the problem helps, but only slightly, e.g., GPT4's performance rises to 11.7%.
arXiv Detail & Related papers (2024-06-18T00:44:58Z) - Distilling Algorithmic Reasoning from LLMs via Explaining Solution Programs [2.3020018305241337]
Distilling explicit chain-of-thought reasoning paths has emerged as an effective method for improving the reasoning abilities of large language models.
We propose a novel approach to distill reasoning abilities from LLMs by leveraging their capacity to explain solutions.
Our experiments demonstrate that learning from explanations enables the Reasoner to more effectively guide program implementation by a Coder.
arXiv Detail & Related papers (2024-04-11T22:19:50Z) - Evaluating and Improving Tool-Augmented Computation-Intensive Math
Reasoning [75.74103236299477]
Chain-of-thought prompting(CoT) and tool augmentation have been validated as effective practices for improving large language models.
We propose a new approach that can deliberate the reasoning steps with tool interfaces, namely textbfDELI.
Experimental results on CARP and six other datasets show that the proposed DELI mostly outperforms competitive baselines.
arXiv Detail & Related papers (2023-06-04T17:02:59Z) - Have LLMs Advanced Enough? A Challenging Problem Solving Benchmark For
Large Language Models [23.344490944210456]
We present 515Bench, a more challenging benchmark dataset for evaluating the problem solving abilities of large language models (LLMs)
We curate challenging pre-engineering mathematics, physics and chemistry problems from the highly competitive IIT-Advanced exam.
Our evaluation on various open-source and proprietary models reveals that the highest performance, even after using techniques like self-consistency, self-refinement and chain-of-thought prompting, is less than 40%.
arXiv Detail & Related papers (2023-05-24T11:55:59Z) - PAL: Program-aided Language Models [112.94785609781503]
We present Program-Aided Language models (PaL) to understand natural language problems.
PaL offloads the solution step to a programmatic runtime such as a Python interpreter.
We set new state-of-the-art results in all 12 benchmarks.
arXiv Detail & Related papers (2022-11-18T18:56:13Z) - Lila: A Unified Benchmark for Mathematical Reasoning [59.97570380432861]
LILA is a unified mathematical reasoning benchmark consisting of 23 diverse tasks along four dimensions.
We construct our benchmark by extending 20 datasets benchmark by collecting task instructions and solutions in the form of Python programs.
We introduce BHASKARA, a general-purpose mathematical reasoning model trained on LILA.
arXiv Detail & Related papers (2022-10-31T17:41:26Z) - Measuring Coding Challenge Competence With APPS [54.22600767666257]
We introduce APPS, a benchmark for code generation.
Our benchmark includes 10,000 problems, which range from having simple one-line solutions to being substantial algorithmic challenges.
Recent models such as GPT-Neo can pass approximately 15% of the test cases of introductory problems.
arXiv Detail & Related papers (2021-05-20T17:58:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.