Adaptive Collaborative Correlation Learning-based Semi-Supervised Multi-Label Feature Selection
- URL: http://arxiv.org/abs/2406.12193v2
- Date: Tue, 25 Jun 2024 07:25:23 GMT
- Title: Adaptive Collaborative Correlation Learning-based Semi-Supervised Multi-Label Feature Selection
- Authors: Yanyong Huang, Li Yang, Dongjie Wang, Ke Li, Xiuwen Yi, Fengmao Lv, Tianrui Li,
- Abstract summary: We propose an Adaptive Collaborative Correlation lEarning-based Semi-Supervised Multi-label Feature Selection (Access-MFS) method to address these issues.
Specifically, a generalized regression model equipped with an extended uncorrelated constraint is introduced to select discriminative yet irrelevant features.
The correlation instance and label correlation are integrated into the proposed regression model to adaptively learn both the sample similarity graph and the label similarity graph.
- Score: 25.195711274756334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised multi-label feature selection has recently been developed to solve the curse of dimensionality problem in high-dimensional multi-label data with certain samples missing labels. Although many efforts have been made, most existing methods use a predefined graph approach to capture the sample similarity or the label correlation. In this manner, the presence of noise and outliers within the original feature space can undermine the reliability of the resulting sample similarity graph. It also fails to precisely depict the label correlation due to the existence of unknown labels. Besides, these methods only consider the discriminative power of selected features, while neglecting their redundancy. In this paper, we propose an Adaptive Collaborative Correlation lEarning-based Semi-Supervised Multi-label Feature Selection (Access-MFS) method to address these issues. Specifically, a generalized regression model equipped with an extended uncorrelated constraint is introduced to select discriminative yet irrelevant features and maintain consistency between predicted and ground-truth labels in labeled data, simultaneously. Then, the instance correlation and label correlation are integrated into the proposed regression model to adaptively learn both the sample similarity graph and the label similarity graph, which mutually enhance feature selection performance. Extensive experimental results demonstrate the superiority of the proposed Access-MFS over other state-of-the-art methods.
Related papers
- Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
Semi-supervised multi-label learning (SSMLL) is a powerful framework for leveraging unlabeled data to reduce the expensive cost of collecting precise multi-label annotations.
Unlike semi-supervised learning, one cannot select the most probable label as the pseudo-label in SSMLL due to multiple semantics contained in an instance.
We propose a dual-perspective method to generate high-quality pseudo-labels.
arXiv Detail & Related papers (2024-07-26T09:33:53Z) - Embedded Multi-label Feature Selection via Orthogonal Regression [45.55795914923279]
State-of-the-art embedded multi-label feature selection algorithms based on at least square regression cannot preserve sufficient discriminative information in multi-label data.
A novel embedded multi-label feature selection method is proposed to facilitate the multi-label feature selection.
Extensive experimental results on ten multi-label data sets demonstrate the effectiveness of GRROOR.
arXiv Detail & Related papers (2024-03-01T06:18:40Z) - Exploring Homogeneous and Heterogeneous Consistent Label Associations
for Unsupervised Visible-Infrared Person ReID [62.81466902601807]
Unsupervised visible-infrared person re-identification (USL-VI-ReID) aims to retrieve pedestrian images of the same identity from different modalities without annotations.
We introduce a Modality-Unified Label Transfer (MULT) module that simultaneously accounts for both homogeneous and heterogeneous fine-grained instance-level structures.
It models both homogeneous and heterogeneous affinities, leveraging them to define the inconsistency for the pseudo-labels and then minimize it, leading to pseudo-labels that maintain alignment across modalities and consistency within intra-modality structures.
arXiv Detail & Related papers (2024-02-01T15:33:17Z) - Deep Partial Multi-Label Learning with Graph Disambiguation [27.908565535292723]
We propose a novel deep Partial multi-Label model with grAph-disambIguatioN (PLAIN)
Specifically, we introduce the instance-level and label-level similarities to recover label confidences.
At each training epoch, labels are propagated on the instance and label graphs to produce relatively accurate pseudo-labels.
arXiv Detail & Related papers (2023-05-10T04:02:08Z) - Category-Adaptive Label Discovery and Noise Rejection for Multi-label
Image Recognition with Partial Positive Labels [78.88007892742438]
Training multi-label models with partial positive labels (MLR-PPL) attracts increasing attention.
Previous works regard unknown labels as negative and adopt traditional MLR algorithms.
We propose to explore semantic correlation among different images to facilitate the MLR-PPL task.
arXiv Detail & Related papers (2022-11-15T02:11:20Z) - Leveraging Instance Features for Label Aggregation in Programmatic Weak
Supervision [75.1860418333995]
Programmatic Weak Supervision (PWS) has emerged as a widespread paradigm to synthesize training labels efficiently.
The core component of PWS is the label model, which infers true labels by aggregating the outputs of multiple noisy supervision sources as labeling functions.
Existing statistical label models typically rely only on the outputs of LF, ignoring the instance features when modeling the underlying generative process.
arXiv Detail & Related papers (2022-10-06T07:28:53Z) - Active Learning by Feature Mixing [52.16150629234465]
We propose a novel method for batch active learning called ALFA-Mix.
We identify unlabelled instances with sufficiently-distinct features by seeking inconsistencies in predictions.
We show that inconsistencies in these predictions help discovering features that the model is unable to recognise in the unlabelled instances.
arXiv Detail & Related papers (2022-03-14T12:20:54Z) - SPL-MLL: Selecting Predictable Landmarks for Multi-Label Learning [87.27700889147144]
We propose to select a small subset of labels as landmarks which are easy to predict according to input (predictable) and can well recover the other possible labels (representative)
We employ the Alternating Direction Method (ADM) to solve our problem. Empirical studies on real-world datasets show that our method achieves superior classification performance over other state-of-the-art methods.
arXiv Detail & Related papers (2020-08-16T11:07:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.