Embedded Multi-label Feature Selection via Orthogonal Regression
- URL: http://arxiv.org/abs/2403.00307v1
- Date: Fri, 1 Mar 2024 06:18:40 GMT
- Title: Embedded Multi-label Feature Selection via Orthogonal Regression
- Authors: Xueyuan Xu, Fulin Wei, Tianyuan Jia, Li Zhuo, Feiping Nie, Xia Wu
- Abstract summary: State-of-the-art embedded multi-label feature selection algorithms based on at least square regression cannot preserve sufficient discriminative information in multi-label data.
A novel embedded multi-label feature selection method is proposed to facilitate the multi-label feature selection.
Extensive experimental results on ten multi-label data sets demonstrate the effectiveness of GRROOR.
- Score: 45.55795914923279
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the last decade, embedded multi-label feature selection methods,
incorporating the search for feature subsets into model optimization, have
attracted considerable attention in accurately evaluating the importance of
features in multi-label classification tasks. Nevertheless, the
state-of-the-art embedded multi-label feature selection algorithms based on
least square regression usually cannot preserve sufficient discriminative
information in multi-label data. To tackle the aforementioned challenge, a
novel embedded multi-label feature selection method, termed global redundancy
and relevance optimization in orthogonal regression (GRROOR), is proposed to
facilitate the multi-label feature selection. The method employs orthogonal
regression with feature weighting to retain sufficient statistical and
structural information related to local label correlations of the multi-label
data in the feature learning process. Additionally, both global feature
redundancy and global label relevancy information have been considered in the
orthogonal regression model, which could contribute to the search for
discriminative and non-redundant feature subsets in the multi-label data. The
cost function of GRROOR is an unbalanced orthogonal Procrustes problem on the
Stiefel manifold. A simple yet effective scheme is utilized to obtain an
optimal solution. Extensive experimental results on ten multi-label data sets
demonstrate the effectiveness of GRROOR.
Related papers
- Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
Semi-supervised multi-label learning (SSMLL) is a powerful framework for leveraging unlabeled data to reduce the expensive cost of collecting precise multi-label annotations.
Unlike semi-supervised learning, one cannot select the most probable label as the pseudo-label in SSMLL due to multiple semantics contained in an instance.
We propose a dual-perspective method to generate high-quality pseudo-labels.
arXiv Detail & Related papers (2024-07-26T09:33:53Z) - Adaptive Collaborative Correlation Learning-based Semi-Supervised Multi-Label Feature Selection [25.195711274756334]
We propose an Adaptive Collaborative Correlation lEarning-based Semi-Supervised Multi-label Feature Selection (Access-MFS) method to address these issues.
Specifically, a generalized regression model equipped with an extended uncorrelated constraint is introduced to select discriminative yet irrelevant features.
The correlation instance and label correlation are integrated into the proposed regression model to adaptively learn both the sample similarity graph and the label similarity graph.
arXiv Detail & Related papers (2024-06-18T01:47:38Z) - Multi-Label Feature Selection Using Adaptive and Transformed Relevance [0.0]
This paper presents a novel information-theoretical filter-based multi-label feature selection, called ATR, with a new function.
ATR ranks features considering individual labels as well as abstract label space discriminative powers.
Our experiments affirm the scalability of ATR for benchmarks characterized by extensive feature and label spaces.
arXiv Detail & Related papers (2023-09-26T09:01:38Z) - Exploiting Diversity of Unlabeled Data for Label-Efficient
Semi-Supervised Active Learning [57.436224561482966]
Active learning is a research area that addresses the issues of expensive labeling by selecting the most important samples for labeling.
We introduce a new diversity-based initial dataset selection algorithm to select the most informative set of samples for initial labeling in the active learning setting.
Also, we propose a novel active learning query strategy, which uses diversity-based sampling on consistency-based embeddings.
arXiv Detail & Related papers (2022-07-25T16:11:55Z) - Random Manifold Sampling and Joint Sparse Regularization for Multi-label
Feature Selection [0.0]
The model proposed in this paper can obtain the most relevant few features by solving the joint constrained optimization problems of $ell_2,1$ and $ell_F$ regularization.
Comparative experiments on real-world data sets show that the proposed method outperforms other methods.
arXiv Detail & Related papers (2022-04-13T15:06:12Z) - Low-rank Dictionary Learning for Unsupervised Feature Selection [11.634317251468968]
We introduce a novel unsupervised feature selection approach by applying dictionary learning ideas in a low-rank representation.
A unified objective function for unsupervised feature selection is proposed in a sparse way by an $ell_2,1$-norm regularization.
Our experimental findings reveal that the proposed method outperforms the state-of-the-art algorithm.
arXiv Detail & Related papers (2021-06-21T13:39:10Z) - Adaptive Graph-based Generalized Regression Model for Unsupervised
Feature Selection [11.214334712819396]
How to select the uncorrelated and discriminative features is the key problem of unsupervised feature selection.
We present a novel generalized regression model imposed by an uncorrelated constraint and the $ell_2,1$-norm regularization.
It can simultaneously select the uncorrelated and discriminative features as well as reduce the variance of these data points belonging to the same neighborhood.
arXiv Detail & Related papers (2020-12-27T09:07:26Z) - Dual-Refinement: Joint Label and Feature Refinement for Unsupervised
Domain Adaptive Person Re-Identification [51.98150752331922]
Unsupervised domain adaptive (UDA) person re-identification (re-ID) is a challenging task due to the missing of labels for the target domain data.
We propose a novel approach, called Dual-Refinement, that jointly refines pseudo labels at the off-line clustering phase and features at the on-line training phase.
Our method outperforms the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-12-26T07:35:35Z) - Minimax Active Learning [61.729667575374606]
Active learning aims to develop label-efficient algorithms by querying the most representative samples to be labeled by a human annotator.
Current active learning techniques either rely on model uncertainty to select the most uncertain samples or use clustering or reconstruction to choose the most diverse set of unlabeled examples.
We develop a semi-supervised minimax entropy-based active learning algorithm that leverages both uncertainty and diversity in an adversarial manner.
arXiv Detail & Related papers (2020-12-18T19:03:40Z) - SPL-MLL: Selecting Predictable Landmarks for Multi-Label Learning [87.27700889147144]
We propose to select a small subset of labels as landmarks which are easy to predict according to input (predictable) and can well recover the other possible labels (representative)
We employ the Alternating Direction Method (ADM) to solve our problem. Empirical studies on real-world datasets show that our method achieves superior classification performance over other state-of-the-art methods.
arXiv Detail & Related papers (2020-08-16T11:07:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.