Spatially Resolved Gene Expression Prediction from Histology via Multi-view Graph Contrastive Learning with HSIC-bottleneck Regularization
- URL: http://arxiv.org/abs/2406.12229v1
- Date: Tue, 18 Jun 2024 03:07:25 GMT
- Title: Spatially Resolved Gene Expression Prediction from Histology via Multi-view Graph Contrastive Learning with HSIC-bottleneck Regularization
- Authors: Changxi Chi, Hang Shi, Qi Zhu, Daoqiang Zhang, Wei Shao,
- Abstract summary: We propose a Multi-view Graph Contrastive Learning framework with HSIC-bottleneck Regularization(ST-GCHB) to help impute the gene expression of the queried imagingspots by considering their spatial dependency.
- Score: 18.554968935341236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of spatial transcriptomics(ST) enables the measurement of gene expression at spatial resolution, making it possible to simultaneously profile the gene expression, spatial locations of spots, and the matched histopathological images. However, the cost for collecting ST data is much higher than acquiring histopathological images, and thus several studies attempt to predict the gene expression on ST by leveraging their corresponding histopathological images. Most of the existing image-based gene prediction models treat the prediction task on each spot of ST data independently, which ignores the spatial dependency among spots. In addition, while the histology images share phenotypic characteristics with the ST data, it is still challenge to extract such common information to help align paired image and expression representations. To address the above issues, we propose a Multi-view Graph Contrastive Learning framework with HSIC-bottleneck Regularization(ST-GCHB) aiming at learning shared representation to help impute the gene expression of the queried imagingspots by considering their spatial dependency.
Related papers
- RankByGene: Gene-Guided Histopathology Representation Learning Through Cross-Modal Ranking Consistency [11.813883157319381]
We propose a novel framework that aligns gene and image features using a ranking-based alignment loss.
To further enhance the alignment's stability, we employ self-supervised knowledge distillation with a teacher-student network architecture.
arXiv Detail & Related papers (2024-11-22T17:08:28Z) - Multi-modal Spatial Clustering for Spatial Transcriptomics Utilizing High-resolution Histology Images [1.3124513975412255]
spatial transcriptomics (ST) enables transcriptome-wide gene expression profiling while preserving spatial context.
Current spatial clustering methods fail to fully integrate high-resolution histology image features with gene expression data.
We propose a novel contrastive learning-based deep learning approach that integrates gene expression data with histology image features.
arXiv Detail & Related papers (2024-10-31T00:32:24Z) - High-Resolution Spatial Transcriptomics from Histology Images using HisToSGE [1.3124513975412255]
HisToSGE generates high-resolution gene expression profiles from histological images.
HisToSGE excels in generating high-resolution gene expression profiles and performing downstream tasks.
arXiv Detail & Related papers (2024-07-30T03:29:57Z) - Multimodal contrastive learning for spatial gene expression prediction using histology images [13.47034080678041]
We propose textbfmclSTExp, a multimodal contrastive learning with Transformer and Densenet-121 encoder for Spatial Transcriptomics Expression prediction.
textbfmclSTExp has superior performance in predicting spatial gene expression.
It has shown promise in interpreting cancer-specific overexpressed genes, elucidating immune-related genes, and identifying specialized spatial domains annotated by pathologists.
arXiv Detail & Related papers (2024-07-11T06:33:38Z) - Unlocking the Power of Spatial and Temporal Information in Medical Multimodal Pre-training [99.2891802841936]
We introduce the Med-ST framework for fine-grained spatial and temporal modeling.
For spatial modeling, Med-ST employs the Mixture of View Expert (MoVE) architecture to integrate different visual features from both frontal and lateral views.
For temporal modeling, we propose a novel cross-modal bidirectional cycle consistency objective by forward mapping classification (FMC) and reverse mapping regression (RMR)
arXiv Detail & Related papers (2024-05-30T03:15:09Z) - Cross-modal Diffusion Modelling for Super-resolved Spatial Transcriptomics [5.020980014307814]
spatial transcriptomics allows to characterize spatial gene expression within tissue for discovery research.
Super-resolution approaches promise to enhance ST maps by integrating histology images with gene expressions of profiled tissue spots.
This paper proposes a cross-modal conditional diffusion model for super-resolving ST maps with the guidance of histology images.
arXiv Detail & Related papers (2024-04-19T16:01:00Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
Genome-wide association studies (GWAS) are used to identify relationships between genetic variations and specific traits.
Representation learning for imaging genetics is largely under-explored due to the unique challenges posed by GWAS.
We introduce a trans-modal learning framework Genetic InfoMax (GIM) to address the specific challenges of GWAS.
arXiv Detail & Related papers (2023-09-26T03:59:21Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
We propose a new framework for gene discovery entitled Un Phenotype Ensembles.
It builds a redundant yet highly expressive representation by pooling a set of phenotypes learned in an unsupervised manner.
These phenotypes are then analyzed via (GWAS), retaining only highly confident and stable associations.
arXiv Detail & Related papers (2023-01-07T18:36:44Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
Convolutional neural networks have been widely applied to hyperspectral image classification.
Recent methods attempt to address this issue by performing graph convolutions on spatial topologies.
arXiv Detail & Related papers (2021-06-26T06:24:51Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.