論文の概要: Self-Supervised Time-Series Anomaly Detection Using Learnable Data Augmentation
- arxiv url: http://arxiv.org/abs/2406.12260v1
- Date: Tue, 18 Jun 2024 04:25:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 22:49:04.282717
- Title: Self-Supervised Time-Series Anomaly Detection Using Learnable Data Augmentation
- Title(参考訳): 学習可能なデータ拡張を用いた自己教師付き時系列異常検出
- Authors: Kukjin Choi, Jihun Yi, Jisoo Mok, Sungroh Yoon,
- Abstract要約: 本稿では,学習可能なデータ拡張に基づく時系列異常検出(LATAD)手法を提案する。
LATADは、比較学習を通じて時系列データから識別的特徴を抽出する。
その結果、LATADは最先端の異常検出評価に匹敵する、あるいは改善された性能を示した。
- 参考スコア(独自算出の注目度): 37.72735288760648
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continuous efforts are being made to advance anomaly detection in various manufacturing processes to increase the productivity and safety of industrial sites. Deep learning replaced rule-based methods and recently emerged as a promising method for anomaly detection in diverse industries. However, in the real world, the scarcity of abnormal data and difficulties in obtaining labeled data create limitations in the training of detection models. In this study, we addressed these shortcomings by proposing a learnable data augmentation-based time-series anomaly detection (LATAD) technique that is trained in a self-supervised manner. LATAD extracts discriminative features from time-series data through contrastive learning. At the same time, learnable data augmentation produces challenging negative samples to enhance learning efficiency. We measured anomaly scores of the proposed technique based on latent feature similarities. As per the results, LATAD exhibited comparable or improved performance to the state-of-the-art anomaly detection assessments on several benchmark datasets and provided a gradient-based diagnosis technique to help identify root causes.
- Abstract(参考訳): 生産現場の生産性と安全性を高めるため, 各種製造工程における異常検出の進展を継続して進めている。
ディープラーニングはルールベースの手法に取って代わられ、近年、様々な産業で異常検出の有望な方法として登場した。
しかし,実世界では異常なデータの不足やラベル付きデータ取得の難しさが,検出モデルの訓練に限界をもたらしている。
本研究では,学習可能なデータ拡張に基づく時系列異常検出(LATAD)手法を提案することにより,これらの問題点に対処する。
LATADは、比較学習を通じて時系列データから識別的特徴を抽出する。
同時に、学習可能なデータ拡張は、学習効率を高めるために、挑戦的な負のサンプルを生成する。
遅延特徴類似度に基づいて,提案手法の異常スコアを測定した。
結果によると、LATADはいくつかのベンチマークデータセットで最先端の異常検出アセスメントと同等または改善された性能を示し、根本原因を特定するための勾配に基づく診断技術を提供した。
関連論文リスト
- Anomaly Detection of Tabular Data Using LLMs [54.470648484612866]
我々は,事前訓練された大規模言語モデル (LLM) がゼロショットバッチレベルの異常検出器であることを示す。
本稿では,実異常検出におけるLCMの潜在性を明らかにするために,エンドツーエンドの微調整手法を提案する。
論文 参考訳(メタデータ) (2024-06-24T04:17:03Z) - Anomaly Detection by Context Contrasting [57.695202846009714]
異常検出は、標準から逸脱するサンプルを特定することに焦点を当てる。
近年の自己教師型学習の進歩は、この点において大きな可能性を秘めている。
本稿では、通常のトレーニングデータを異なるコンテキストに設定することで、この問題に対処するCon2を提案する。
より現実的な医療環境では,様々なベンチマークで最先端のパフォーマンスを実現しつつ,優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-05-29T07:59:06Z) - ADT: Agent-based Dynamic Thresholding for Anomaly Detection [4.356615197661274]
本稿では,エージェントベースの動的しきい値処理(ADT)フレームワークを提案する。
本研究では,自動エンコーダを用いて特徴表現を取得し,複雑な入力データに対する異常スコアを生成する。
ADTはオートエンコーダの異常スコアを利用して閾値を適応的に調整することができる。
論文 参考訳(メタデータ) (2023-12-03T19:07:30Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
異常ラベルは時系列異常検出において従来の教師付きモデルを妨げる。
自己教師型学習のような様々なSOTA深層学習技術がこの問題に対処するために導入されている。
自己教師型3領域異常検出器(TriAD)を提案する。
論文 参考訳(メタデータ) (2023-11-19T05:37:18Z) - ImDiffusion: Imputed Diffusion Models for Multivariate Time Series
Anomaly Detection [44.21198064126152]
我々はImDiffusionという新しい異常検出フレームワークを提案する。
ImDiffusionは時系列計算と拡散モデルを組み合わせて、正確で堅牢な異常検出を実現する。
我々はImDiffusionの性能をベンチマークデータセットの広範な実験により評価する。
論文 参考訳(メタデータ) (2023-07-03T04:57:40Z) - WePaMaDM-Outlier Detection: Weighted Outlier Detection using Pattern
Approaches for Mass Data Mining [0.6754597324022876]
外乱検出は、システム障害、不正行為、およびデータ内のパターンに関する重要な情報を明らかにすることができる。
本稿では、異なる質量データマイニング領域を持つWePaMaDM-Outlier Detectionを提案する。
また, 監視, 故障検出, 傾向解析において, 異常検出技術におけるデータモデリングの重要性についても検討した。
論文 参考訳(メタデータ) (2023-06-09T07:00:00Z) - What makes a good data augmentation for few-shot unsupervised image
anomaly detection? [40.33586461619278]
各種データ拡張手法が各種異常検出アルゴリズムに与える影響について検討した。
その結果, 産業用画像異常検出アルゴリズム(IADと推定される)の性能は, 特定のデータ拡張法に大きく影響されないことがわかった。
論文 参考訳(メタデータ) (2023-04-06T07:05:59Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate
Time Series Data [13.864161788250856]
TranADはディープトランスネットワークに基づく異常検出および診断モデルである。
注意に基づくシーケンスエンコーダを使用して、データ内のより広い時間的傾向の知識を迅速に推論する。
TranADは、データと時間効率のトレーニングによる検出と診断のパフォーマンスにおいて、最先端のベースラインメソッドよりも優れています。
論文 参考訳(メタデータ) (2022-01-18T19:41:29Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。