Transversal CNOT gate with multi-cycle error correction
- URL: http://arxiv.org/abs/2406.12267v1
- Date: Tue, 18 Jun 2024 04:50:15 GMT
- Title: Transversal CNOT gate with multi-cycle error correction
- Authors: Younghun Kim, Martin Sevior, Muhammad Usman,
- Abstract summary: A scalable and programmable quantum computer holds the potential to solve computationally intensive tasks that computers cannot accomplish within a reasonable time frame, achieving quantum advantage.
The vulnerability of the current generation of quantum processors to errors poses a significant challenge towards executing complex and deep quantum circuits required for practical problems.
Our work establishes the feasibility of employing logical CNOT gates alongside error detection on a superconductor-based processor using current generation quantum hardware.
- Score: 1.7359033750147501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A scalable and programmable quantum computer holds the potential to solve computationally intensive tasks that classical computers cannot accomplish within a reasonable time frame, achieving quantum advantage. However, the vulnerability of the current generation of quantum processors to errors poses a significant challenge towards executing complex and deep quantum circuits required for practical problems. Quantum error correction codes such as Stabilizer codes offer a promising path forward for fault-tolerant quantum computing, however their realisation on quantum hardware is an on-going area of research. In particular, fault-tolerant quantum processing must employ logical gates on logical qubits with error suppression with realistically large size codes. This work has implemented a transversal CNOT gate between two logical qubits constructed using the Repetition code with flag qubits, and demonstrated error suppression with increasing code size under multiple rounds of error detection. By performing experiments on IBM quantum devices through cloud access, our results show that despite the potential for error propagation among logical qubits during the transversal CNOT gate operation, increasing the number of physical qubits from 21 to 39 and 57 can suppress errors, which persists over 10 rounds of error detection. Our work establishes the feasibility of employing logical CNOT gates alongside error detection on a superconductor-based processor using current generation quantum hardware.
Related papers
- Demonstrating real-time and low-latency quantum error correction with superconducting qubits [52.08698178354922]
We demonstrate low-latency feedback with a scalable FPGA decoder integrated into a superconducting quantum processor.
We observe logical error suppression as the number of decoding rounds is increased.
The decoder throughput and latency developed in this work, combined with continued device improvements, unlock the next generation of experiments.
arXiv Detail & Related papers (2024-10-07T17:07:18Z) - Hardware-Efficient Fault Tolerant Quantum Computing with Bosonic Grid States in Superconducting Circuits [0.0]
This perspective manuscript describes how bosonic codes, particularly grid state encodings, offer a pathway to scalable fault-tolerant quantum computing.
By leveraging the large Hilbert space of bosonic modes, quantum error correction can operate at the single physical unit level.
We argue that it offers the shortest path to achieving fault tolerance in gate-based quantum computing processors with a MHz logical clock rate.
arXiv Detail & Related papers (2024-09-09T17:20:06Z) - Algorithmic Fault Tolerance for Fast Quantum Computing [37.448838730002905]
We show that fault-tolerant logical operations can be performed with constant time overhead for a broad class of quantum codes.
We prove that the deviation from the ideal measurement result distribution can be made exponentially small in the code distance.
Our work sheds new light on the theory of fault tolerance, potentially reducing the space-time cost of practical fault-tolerant quantum computation by orders of magnitude.
arXiv Detail & Related papers (2024-06-25T15:43:25Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Protecting Expressive Circuits with a Quantum Error Detection Code [0.0]
We develop a quantum error detection code for implementations on existing trapped-ion computers.
By encoding $k$ logical qubits into $k+2$ physical qubits, this code presents fault-tolerant state initialisation and syndrome measurement circuits.
arXiv Detail & Related papers (2022-11-12T16:46:35Z) - Demonstration of fault-tolerant universal quantum gate operations [1.1817296279855427]
Quantum computers can be protected from noise by encoding the logical quantum information redundantly into multiple qubits.
Errors caused by imperfect operations do not spread uncontrollably through the quantum register.
We demonstrate a fault-tolerant universal set of gates on two logical qubits in a trapped-ion quantum computer.
arXiv Detail & Related papers (2021-11-24T17:34:14Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Certified quantum gates [0.0]
We present a strategy for developing quantum error detection for certain gate imperfections.
Error detection can be used to certify individual gate operations against certain errors.
arXiv Detail & Related papers (2020-08-17T17:36:51Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.