論文の概要: UrbanLLM: Autonomous Urban Activity Planning and Management with Large Language Models
- arxiv url: http://arxiv.org/abs/2406.12360v1
- Date: Tue, 18 Jun 2024 07:41:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 20:16:07.411249
- Title: UrbanLLM: Autonomous Urban Activity Planning and Management with Large Language Models
- Title(参考訳): UrbanLLM:大規模言語モデルによる自律型都市活動計画と管理
- Authors: Yue Jiang, Qin Chao, Yile Chen, Xiucheng Li, Shuai Liu, Gao Cong,
- Abstract要約: UrbanLLMは、都市関連クエリを管理可能なサブタスクに分解することで問題を解決する。
サブタスクごとに適切なAIモデルを特定し、与えられたクエリに対する包括的な応答を生成する。
- 参考スコア(独自算出の注目度): 20.069378890478763
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Location-based services play an critical role in improving the quality of our daily lives. Despite the proliferation of numerous specialized AI models within spatio-temporal context of location-based services, these models struggle to autonomously tackle problems regarding complex urban planing and management. To bridge this gap, we introduce UrbanLLM, a fine-tuned large language model (LLM) designed to tackle diverse problems in urban scenarios. UrbanLLM functions as a problem-solver by decomposing urban-related queries into manageable sub-tasks, identifying suitable spatio-temporal AI models for each sub-task, and generating comprehensive responses to the given queries. Our experimental results indicate that UrbanLLM significantly outperforms other established LLMs, such as Llama and the GPT series, in handling problems concerning complex urban activity planning and management. UrbanLLM exhibits considerable potential in enhancing the effectiveness of solving problems in urban scenarios, reducing the workload and reliance for human experts.
- Abstract(参考訳): 位置情報ベースのサービスは、日常生活の質を向上させる上で重要な役割を担います。
位置情報ベースのサービスの時空間における多くの専門的なAIモデルの普及にもかかわらず、これらのモデルは複雑な都市計画と管理に関する問題に自律的に取り組むのに苦労している。
このギャップを埋めるために,都市シナリオにおける多様な問題に対処するために設計された,細調整の大型言語モデル(LLM)であるUrbanLLMを紹介する。
UrbanLLMは、都市関連クエリを管理可能なサブタスクに分解し、サブタスク毎に適切な時空間AIモデルを特定し、与えられたクエリに対する包括的な応答を生成することで、問題解決の役割を果たす。
以上の結果から,Llama や GPT シリーズなどの既存の LLM よりも,複雑な都市活動計画と管理に関する問題に対処する上で,UrbanLLM の方が優れていたことが示唆された。
UrbanLLMは、都市シナリオにおける問題解決の有効性を高め、作業負荷と人的専門家への信頼を減らし、大きな可能性を秘めている。
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - Collaborative Imputation of Urban Time Series through Cross-city Meta-learning [54.438991949772145]
メタ学習型暗黙的ニューラル表現(INR)を利用した新しい協調的計算パラダイムを提案する。
次に,モデルに依存しないメタ学習による都市間協調学習手法を提案する。
20のグローバル都市から得られた多様な都市データセットの実験は、我々のモデルの優れた計算性能と一般化可能性を示している。
論文 参考訳(メタデータ) (2025-01-20T07:12:40Z) - EgoPlan-Bench2: A Benchmark for Multimodal Large Language Model Planning in Real-World Scenarios [53.26658545922884]
EgoPlan-Bench2は,MLLMの計画能力を評価するためのベンチマークである。
我々は,21の競争的MLLMを評価し,その限界を詳細に分析した結果,実世界の計画において大きな課題に直面していることが明らかとなった。
EgoPlan-Bench2におけるGPT-4Vの10.24倍の性能向上を図る。
論文 参考訳(メタデータ) (2024-12-05T18:57:23Z) - UrBench: A Comprehensive Benchmark for Evaluating Large Multimodal Models in Multi-View Urban Scenarios [60.492736455572015]
複雑な多視点都市シナリオにおけるLMM評価のためのベンチマークであるUrBenchを提案する。
UrBenchには、リージョンレベルとロールレベルの両方で、厳密にキュレートされた11.6Kの質問が含まれている。
21のLMMに対する評価は、現在のLMMが都市環境においていくつかの面で苦戦していることを示している。
論文 参考訳(メタデータ) (2024-08-30T13:13:35Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
タスク・アンド・モーション・プランニング(タスク・アンド・モーション・プランニング、TAMP)は、自動化された計画問題の解決策を見つけるための問題である。
本稿では,TAMP問題のモデル化とベンチマークを行うための,汎用的でオープンソースのフレームワークを提案する。
移動エージェントと複数のタスク状態依存障害を含むTAMP問題を解決する革新的なメタ技術を導入する。
論文 参考訳(メタデータ) (2024-08-11T14:57:57Z) - MetaUrban: An Embodied AI Simulation Platform for Urban Micromobility [52.0930915607703]
最近のロボティクスとエンボディードAIの進歩により、公共の都市空間はもはや人間専用ではない。
公共の都市空間における短距離移動のためのAIによって実現されるマイクロモビリティは、将来の交通システムにおいて重要な要素である。
本稿では,AI駆動型都市マイクロモビリティ研究のための構成シミュレーションプラットフォームであるMetaUrbanを紹介する。
論文 参考訳(メタデータ) (2024-07-11T17:56:49Z) - CityGPT: Empowering Urban Spatial Cognition of Large Language Models [7.40606412920065]
強力な言語生成と推論機能を備えた大規模言語モデル(LLM)は、すでに多くのドメインで成功している。
しかし、物理世界のコーパスが不足し、訓練中に知識が不足しているため、都市空間における多くの現実的なタスクを解決できないのが普通である。
都市空間の理解と関連する都市課題の解決におけるLCMの能力向上のための体系的枠組みであるCityGPTを提案する。
論文 参考訳(メタデータ) (2024-06-20T02:32:16Z) - CityBench: Evaluating the Capabilities of Large Language Models for Urban Tasks [10.22654338686634]
広範な一般知識と強力な推論能力を持つ大規模言語モデル(LLM)は、急速な開発と広範な応用が見られた。
本稿では,対話型シミュレータによる評価プラットフォームであるCityBenchを設計する。
我々は,CityBenchとして認識理解と意思決定の2つのカテゴリに8つの代表的都市タスクを設計する。
論文 参考訳(メタデータ) (2024-06-20T02:25:07Z) - Towards Urban General Intelligence: A Review and Outlook of Urban Foundation Models [24.88814197611069]
機械学習技術の統合は、インテリジェントな都市サービスの発展の基盤となっている。
ChatGPTのような基盤モデルの最近の進歩は、機械学習と人工知能の分野でパラダイムシフトをもたらした。
UFM(Urban Foundation Models)に注目が集まる一方で、急速に発展するこの分野は重要な課題に直面している。
論文 参考訳(メタデータ) (2024-01-30T04:48:16Z) - Large language model empowered participatory urban planning [5.402147437950729]
本研究では,大規模言語モデル(LLM)を参加型プロセスに統合した革新的な都市計画手法を提案する。
このフレームワークは、LLMエージェントをベースとして、役割プレイ、共同生成、フィードバックで構成され、コミュニティレベルの土地利用タスクを1000の異なる関心事に対応させて解決する。
論文 参考訳(メタデータ) (2024-01-24T10:50:01Z) - Urban Generative Intelligence (UGI): A Foundational Platform for Agents
in Embodied City Environment [32.53845672285722]
複雑な多層ネットワークを特徴とする都市環境は、急速な都市化に直面している重要な課題に直面している。
近年、ビッグデータ、人工知能、都市コンピューティング、デジタル双生児が発展し、洗練された都市モデリングとシミュレーションの基礎を築いた。
本稿では,大規模言語モデル(LLM)を都市システムに統合した新しい基盤プラットフォームである都市生成知能(UGI)を提案する。
論文 参考訳(メタデータ) (2023-12-19T03:12:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。