Adaptive Mean Estimation in the Hidden Markov sub-Gaussian Mixture Model
- URL: http://arxiv.org/abs/2406.12446v1
- Date: Tue, 18 Jun 2024 09:48:21 GMT
- Title: Adaptive Mean Estimation in the Hidden Markov sub-Gaussian Mixture Model
- Authors: Vahe Karagulyan, Mohamed Ndaoud,
- Abstract summary: We first study the limitations of existing results in the high dimensional setting and then propose a minimax optimal procedure for the problem of center estimation.
We show that our procedure reaches the optimal rate that is of order $sqrtdelta d/n + d/n$ instead of $sqrtd/n + d/n$ where $delta in(0,1)$ is a dependence parameter between labels.
- Score: 2.07180164747172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the problem of center estimation in the high dimensional binary sub-Gaussian Mixture Model with Hidden Markov structure on the labels. We first study the limitations of existing results in the high dimensional setting and then propose a minimax optimal procedure for the problem of center estimation. Among other findings, we show that our procedure reaches the optimal rate that is of order $\sqrt{\delta d/n} + d/n$ instead of $\sqrt{d/n} + d/n$ where $\delta \in(0,1)$ is a dependence parameter between labels. Along the way, we also develop an adaptive variant of our procedure that is globally minimax optimal. In order to do so, we rely on a more refined and localized analysis of the estimation risk. Overall, leveraging the hidden Markovian dependence between the labels, we show that it is possible to get a strict improvement of the rates adaptively at almost no cost.
Related papers
- Online covariance estimation for stochastic gradient descent under
Markovian sampling [20.02012768403544]
Convergence rates of order $Obig(sqrtd,n-1/8(log n)1/4big)$ are established under state-dependent and state-independent Markovian sampling.
Our method is applied to the strategic classification with logistic regression, where adversaries adaptively modify features during training to affect target class classification.
arXiv Detail & Related papers (2023-08-03T00:21:30Z) - Revisiting Rotation Averaging: Uncertainties and Robust Losses [51.64986160468128]
We argue that the main problem of current methods is the minimized cost function that is only weakly connected with the input data via the estimated epipolar.
We propose to better model the underlying noise distributions by directly propagating the uncertainty from the point correspondences into the rotation averaging.
arXiv Detail & Related papers (2023-03-09T11:51:20Z) - DR-DSGD: A Distributionally Robust Decentralized Learning Algorithm over
Graphs [54.08445874064361]
We propose to solve a regularized distributionally robust learning problem in the decentralized setting.
By adding a Kullback-Liebler regularization function to the robust min-max optimization problem, the learning problem can be reduced to a modified robust problem.
We show that our proposed algorithm can improve the worst distribution test accuracy by up to $10%$.
arXiv Detail & Related papers (2022-08-29T18:01:42Z) - Distributed Sparse Regression via Penalization [5.990069843501885]
We study linear regression over a network of agents, modeled as an undirected graph (with no centralized node)
The estimation problem is formulated as the minimization of the sum of the local LASSO loss functions plus a quadratic penalty of the consensus constraint.
We show that the proximal-gradient algorithm applied to the penalized problem converges linearly up to a tolerance of the order of the centralized statistical error.
arXiv Detail & Related papers (2021-11-12T01:51:50Z) - Navigating to the Best Policy in Markov Decision Processes [68.8204255655161]
We investigate the active pure exploration problem in Markov Decision Processes.
Agent sequentially selects actions and, from the resulting system trajectory, aims at the best as fast as possible.
arXiv Detail & Related papers (2021-06-05T09:16:28Z) - Nearly Dimension-Independent Sparse Linear Bandit over Small Action
Spaces via Best Subset Selection [71.9765117768556]
We consider the contextual bandit problem under the high dimensional linear model.
This setting finds essential applications such as personalized recommendation, online advertisement, and personalized medicine.
We propose doubly growing epochs and estimating the parameter using the best subset selection method.
arXiv Detail & Related papers (2020-09-04T04:10:39Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
We propose differentially private (DP) algorithms for bound non-dimensional optimization.
We demonstrate two popular deep learning methods on the empirical advantages over standard gradient methods.
arXiv Detail & Related papers (2020-06-24T06:01:24Z) - Least Squares Regression with Markovian Data: Fundamental Limits and
Algorithms [69.45237691598774]
We study the problem of least squares linear regression where the data-points are dependent and are sampled from a Markov chain.
We establish sharp information theoretic minimax lower bounds for this problem in terms of $tau_mathsfmix$.
We propose an algorithm based on experience replay--a popular reinforcement learning technique--that achieves a significantly better error rate.
arXiv Detail & Related papers (2020-06-16T04:26:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.