論文の概要: PCA-Relax: Deep-learning-based groupwise registration for motion correction of cardiac $T_1$ mapping
- arxiv url: http://arxiv.org/abs/2406.12456v1
- Date: Tue, 18 Jun 2024 10:00:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 19:27:22.562249
- Title: PCA-Relax: Deep-learning-based groupwise registration for motion correction of cardiac $T_1$ mapping
- Title(参考訳): PCA-Relax:Deep-learning-based groupwise registration for motion correct of heartc $T_1$ mapping
- Authors: Yi Zhang, Yidong Zhao, Lu Huang, Liming Xia, Qian Tao,
- Abstract要約: テンプレートの必要性を省略し,すべてのベースラインイメージを同時に登録する,新しいディープラーニングベースのグループワイド登録フレームワークを提案する。
我々は,PCA-Relax''とよばれる手法と,他のベースライン法を社内の心臓MRIデータセット上で広範囲に評価した。
提案したPCA-Relaxは, 確立されたベースライン上での登録とマッピングの性能をさらに向上させた。
- 参考スコア(独自算出の注目度): 7.69096935566025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantitative MRI (qMRI) is an increasingly important tool for clinical assessment of cardiovascular diseases. Quantitative maps are derived by fitting a known signal model to a series of baseline images, while the quality of the map can be deteriorated by involuntary respiratory and cardiac motion. To correct motion, a template image is often needed to register all baseline images, but the choice of template is nontrivial, leading to inconsistent performance sensitive to image contrast. In this work, we propose a novel deep-learning-based groupwise registration framework, which omits the need for a template, and registers all baseline images simultaneously. We design two groupwise losses for this registration framework: the first is a linear principal component analysis (PCA) loss that enforces alignment of baseline images irrespective of the intensity variation, and the second is an auxiliary relaxometry loss that enforces adherence of intensity profile to the signal model. We extensively evaluated our method, termed ``PCA-Relax'', and other baseline methods on an in-house cardiac MRI dataset including both pre- and post-contrast $T_1$ sequences. All methods were evaluated under three distinct training-and-evaluation strategies, namely, standard, one-shot, and test-time-adaptation. The proposed PCA-Relax showed further improved performance of registration and mapping over well-established baselines. The proposed groupwise framework is generic and can be adapted to applications involving multiple images.
- Abstract(参考訳): 定量的MRI (qMRI) は, 心血管疾患の臨床的評価において重要なツールである。
定量的マップは、既知の信号モデルと一連のベースライン画像とを合わせ、マップの品質は不随意呼吸と心臓の動きによって劣化させることができる。
動きを補正するためには、すべてのベースラインイメージを登録するためにテンプレートイメージが必要であるが、テンプレートの選択は簡単ではないため、画像のコントラストに敏感なパフォーマンスをもたらす。
本研究では,テンプレートの必要性を軽減し,すべてのベースラインイメージを同時に登録する,新しいディープラーニングベースのグループワイド登録フレームワークを提案する。
1つは線形主成分分析(PCA)損失であり、もう1つは信号モデルへの強度プロファイルの付着を強制する緩和緩和法損失である。
我々は,<PCA-Relax''とよばれる手法と,コントラスト前および後の両方のT_1$配列を含む心筋MRIデータセットのベースライン法を広範囲に評価した。
全ての手法は、標準、単発、テストタイム適応という3つの異なるトレーニング・アンド・評価戦略に基づいて評価された。
提案したPCA-Relaxは, 確立されたベースライン上での登録とマッピングの性能をさらに向上させた。
提案したグループワイドフレームワークは汎用的であり、複数の画像を含むアプリケーションに適用することができる。
関連論文リスト
- RS-MOCO: A deep learning-based topology-preserving image registration method for cardiac T1 mapping [3.293391422431541]
現在、心臓T1マッピングでは、運動補正の効果的な、堅牢で効率的な方法が欠如している。
本稿では,心的T1マッピングにおける動き補正のための深層学習に基づくトポロジ保存画像登録フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-15T14:38:35Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Adaptive Correspondence Scoring for Unsupervised Medical Image Registration [9.294341405888158]
既存の手法では、画像再構成を主要な監視信号として用いている。
そこで本研究では,学習中の誤り残差を対応スコアマップで再重み付けする適応フレームワークを提案する。
我々のフレームワークは、量的にも質的にも、他の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2023-12-01T01:11:22Z) - Contrast-Agnostic Groupwise Registration by Robust PCA for Quantitative
Cardiac MRI [15.778560241913674]
定量的な心臓MRIシークエンス内の全てのベースライン画像の同時登録は、地図の精度と精度に不可欠である。
定量的心臓MRIを低ランク・スパース成分に分解する新しい運動補正フレームワークを提案する。
提案手法は, rPCAを導入することなく, ベースライン方式による登録性能を効果的に向上することを示す。
論文 参考訳(メタデータ) (2023-11-03T13:48:13Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
InDuDoNet+と呼ばれる新しい解釈可能な二重ドメインネットワークを構築し、CT画像の微細な埋め込みを行う。
異なる組織間のCT値を分析し,InDuDoNet+の事前観測ネットワークにマージすることで,その一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-12-23T15:52:37Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
本稿では,患者スキャンに欠落するサブモダリティを1つ以上のインプットするために,MGP-VAE(Multi-modal Gaussian Process Prior Variational Autoencoder)を提案する。
MGP-VAEは、変分オートエンコーダ(VAE)に先立ってガウス過程(GP)を利用して、被験者/患者およびサブモダリティ相関を利用することができる。
4つのサブモダリティのうち2つ、または3つが欠落している脳腫瘍に対するMGP-VAEの適用性を示す。
論文 参考訳(メタデータ) (2021-07-07T19:06:34Z) - Cost-Sensitive Regularization for Diabetic Retinopathy Grading from Eye
Fundus Images [20.480034690570196]
本稿では,眼底画像から糖尿病網膜症(DR)の重症度を予測するための制約を強制するための簡単なアプローチを提案する。
正規化要因として機能する余分な用語で標準分類損失を拡大する。
DRグレーディングに関連する各サブプロブレムにおいて,ラベルノイズのモデル化に我々の手法を適用する方法について述べる。
論文 参考訳(メタデータ) (2020-10-01T10:42:06Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - MvMM-RegNet: A new image registration framework based on multivariate
mixture model and neural network estimation [14.36896617430302]
生成モデル(MvMM)とニューラルネットワーク推定に基づく新しい画像登録フレームワークを提案する。
外観と解剖情報を一体化した生成モデルを構築し、グループ登録が可能な新規な損失関数を導出する。
マルチモーダル心画像への様々な応用のためのフレームワークの汎用性を強調した。
論文 参考訳(メタデータ) (2020-06-28T11:19:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。