論文の概要: Predicting Award Winning Research Papers at Publication Time
- arxiv url: http://arxiv.org/abs/2406.12535v1
- Date: Tue, 18 Jun 2024 12:09:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 21:41:06.330899
- Title: Predicting Award Winning Research Papers at Publication Time
- Title(参考訳): 学術論文賞の公募時間における受賞予測
- Authors: Riccardo Vella, Andrea Vitaletti, Fabrizio Silvestri,
- Abstract要約: 我々は、出版時に利用可能な情報にのみ依存して受賞する研究論文の可能性を予測する。
我々はArnetMinerの引用グラフを考慮した実験を行い、受賞論文の真理は32のコンピュータサイエンスカンファレンスから最高の論文賞の収集から得られた。
注目すべきは、高いリコールと低い偽陰性率は、そのモデルが賞を得ない論文を特定するのにいかにうまく機能するかを示している。
- 参考スコア(独自算出の注目度): 5.318302558039615
- License:
- Abstract: In recent years, many studies have been focusing on predicting the scientific impact of research papers. Most of these predictions are based on citations count or rely on features obtainable only from already published papers. In this study, we predict the likelihood for a research paper of winning an award only relying on information available at publication time. For each paper, we build the citation subgraph induced from its bibliography. We initially consider some features of this subgraph, such as the density and the global clustering coefficient, to make our prediction. Then, we mix this information with textual features, extracted from the abstract and the title, to obtain a more accurate final prediction. We made our experiments considering the ArnetMiner citation graph, while the ground truth on award-winning papers has been obtained from a collection of best paper awards from 32 computer science conferences. In our experiment, we obtained an encouraging F1 score of 0.694. Remarkably, The high recall and the low false negatives rate, show how the model performs very well at identifying papers that will not win an award. This behavior can help researchers in getting a first evaluation of their work at publication time. Lastly, we made some first experiments on interpretability. Our results highlight some interesting patterns both in topological and textual features.
- Abstract(参考訳): 近年,研究論文の科学的影響の予測に多くの研究が注がれている。
これらの予測のほとんどは引用数に基づいており、既に出版された論文からのみ得られる特徴に依存している。
本研究では,出版時に利用可能な情報にのみ依存して受賞する研究論文の可能性を予測した。
それぞれの論文に対して,その文献から誘導される引用部分グラフを構築した。
まず,この部分グラフの特徴,例えば密度や大域的クラスタリング係数について考察し,予測を行った。
そして、この情報を要約とタイトルから抽出したテキスト特徴と組み合わせて、より正確な最終予測を得る。
我々はArnetMinerの引用グラフを考慮した実験を行い、受賞論文の真理は32のコンピュータサイエンスカンファレンスから最高の論文賞の収集から得られた。
実験ではF1スコア0.694を得た。
注目すべきは、高いリコールと低い偽陰性率は、そのモデルが賞を得ない論文を特定するのにいかにうまく機能するかを示している。
この行動は、出版時に研究成果を最初に評価するのに役立ちます。
最後に,解釈可能性に関する最初の実験を行った。
この結果はトポロジカルな特徴とテキスト的特徴の両方において興味深いパターンを浮き彫りにしている。
関連論文リスト
- CausalCite: A Causal Formulation of Paper Citations [80.82622421055734]
CausalCiteは紙の意義を測定するための新しい方法だ。
これは、従来のマッチングフレームワークを高次元のテキスト埋め込みに適応させる、新しい因果推論手法であるTextMatchに基づいている。
科学専門家が報告した紙衝撃と高い相関性など,各種基準におけるCausalCiteの有効性を実証する。
論文 参考訳(メタデータ) (2023-11-05T23:09:39Z) - Estimating the Causal Effect of Early ArXiving on Paper Acceptance [56.538813945721685]
我々は,論文の審査期間(初期arXiving)前にarXivingが会議の受理に与える影響を推定する。
以上の結果から,早期のarXivingは,論文の受容に少なからぬ影響を及ぼす可能性が示唆された。
論文 参考訳(メタデータ) (2023-06-24T07:45:38Z) - Cracking Double-Blind Review: Authorship Attribution with Deep Learning [43.483063713471935]
本稿では、匿名の原稿を著者に属性付けるトランスフォーマーベースのニューラルネットワークアーキテクチャを提案する。
我々は、arXivで公開されているすべての研究論文を200万冊以上の原稿に活用する。
本手法は, 論文の最大73%を正解する, 前代未聞の著者帰属精度を実現する。
論文 参考訳(メタデータ) (2022-11-14T15:50:24Z) - Citation Trajectory Prediction via Publication Influence Representation
Using Temporal Knowledge Graph [52.07771598974385]
既存のアプローチは主に学術論文の時間的データとグラフデータのマイニングに依存している。
本フレームワークは,差分保存グラフ埋め込み,きめ細かい影響表現,学習に基づく軌道計算という3つのモジュールから構成される。
APSアカデミックデータセットとAIPatentデータセットの両方で実験を行った。
論文 参考訳(メタデータ) (2022-10-02T07:43:26Z) - Square One Bias in NLP: Towards a Multi-Dimensional Exploration of the
Research Manifold [88.83876819883653]
我々は、最近のNLP研究論文のマニュアル分類を通して、これが事実であることを示す。
NLP研究は正方形ではなく、精度だけでなく、公平性や解釈可能性にも焦点をあてる。
論文 参考訳(メタデータ) (2022-06-20T13:04:23Z) - A Measure of Research Taste [91.3755431537592]
生産性と味の両方に報いる引用に基づく尺度を提案する。
提示された尺度capは、出版物とその量の影響のバランスをとる。
本研究では, 生物学, 計算機科学, 経済学, 物理分野の研究者を対象に, capの特性を解析した。
論文 参考訳(メタデータ) (2021-05-17T18:01:47Z) - Enhancing Scientific Papers Summarization with Citation Graph [78.65955304229863]
引用グラフを用いて科学論文の要約作業を再定義します。
我々は,141kの研究論文を異なる領域に格納した,新しい科学論文要約データセットセマンティックスタディネットワーク(ssn)を構築した。
我々のモデルは、事前訓練されたモデルと比較して競争性能を達成することができる。
論文 参考訳(メタデータ) (2021-04-07T11:13:35Z) - Early Indicators of Scientific Impact: Predicting Citations with
Altmetrics [0.0]
altmetricsを使って、学術的な出版物が得る短期的および長期的な引用を予測する。
我々は,様々な分類モデルと回帰モデルを構築し,それらの性能を評価し,それらのタスクに最適なニューラルネットワークとアンサンブルモデルを見つける。
論文 参考訳(メタデータ) (2020-12-25T16:25:07Z) - Longitudinal Citation Prediction using Temporal Graph Neural Networks [27.589741169713825]
シーケンス引用予測のタスクを紹介します。
目標は、学術研究が経時的に受ける引用回数の軌跡を正確に予測することである。
論文 参考訳(メタデータ) (2020-12-10T15:25:16Z) - Utilizing Citation Network Structure to Predict Citation Counts: A Deep
Learning Approach [0.0]
本稿では,情報カスケードの効果を組み合わせ,引用数予測問題に注目するエンド・ツー・エンドのディープラーニングネットワークであるDeepCCPを提案する。
6つの実データ集合の実験によると、DeepCCPは引用数予測の精度において最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2020-09-06T05:27:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。