Applying Ensemble Methods to Model-Agnostic Machine-Generated Text Detection
- URL: http://arxiv.org/abs/2406.12570v1
- Date: Tue, 18 Jun 2024 12:58:01 GMT
- Title: Applying Ensemble Methods to Model-Agnostic Machine-Generated Text Detection
- Authors: Ivan Ong, Boon King Quek,
- Abstract summary: We study the problem of detecting machine-generated text when the large language model it is possibly derived from is unknown.
We use a zero-shot model for machine-generated text detection which is highly accurate when the generative (or base) language model is the same as the discriminative (or scoring) language model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we study the problem of detecting machine-generated text when the large language model (LLM) it is possibly derived from is unknown. We do so by apply ensembling methods to the outputs from DetectGPT classifiers (Mitchell et al. 2023), a zero-shot model for machine-generated text detection which is highly accurate when the generative (or base) language model is the same as the discriminative (or scoring) language model. We find that simple summary statistics of DetectGPT sub-model outputs yield an AUROC of 0.73 (relative to 0.61) while retaining its zero-shot nature, and that supervised learning methods sharply boost the accuracy to an AUROC of 0.94 but require a training dataset. This suggests the possibility of further generalisation to create a highly-accurate, model-agnostic machine-generated text detector.
Related papers
- Who Wrote This? The Key to Zero-Shot LLM-Generated Text Detection Is GECScore [51.65730053591696]
We propose a simple but effective black-box zero-shot detection approach.
It is predicated on the observation that human-written texts typically contain more grammatical errors than LLM-generated texts.
Our method achieves an average AUROC of 98.7% and shows strong robustness against paraphrase and adversarial perturbation attacks.
arXiv Detail & Related papers (2024-05-07T12:57:01Z) - How well can machine-generated texts be identified and can language
models be trained to avoid identification? [1.1606619391009658]
We refine five separate language models to generate synthetic tweets.
We find that shallow learning classification algorithms, like Naive Bayes, achieve detection accuracy between 0.6 and 0.8.
We find that using a reinforcement learning approach to refine our generative models can successfully evade BERT-based classifiers with a detection accuracy of 0.15 or less.
arXiv Detail & Related papers (2023-10-25T20:43:07Z) - Fast-DetectGPT: Efficient Zero-Shot Detection of Machine-Generated Text
via Conditional Probability Curvature [36.31281981509264]
Large language models (LLMs) have shown the ability to produce fluent and cogent content.
To build trustworthy AI systems, it is imperative to distinguish between machine-generated and human-authored content.
Fast-DetectGPT is an optimized zero-shot detector that substitutes DetectGPT's perturbation step with a more efficient sampling step.
arXiv Detail & Related papers (2023-10-08T11:41:28Z) - Zero-Shot Detection of Machine-Generated Codes [83.0342513054389]
This work proposes a training-free approach for the detection of LLMs-generated codes.
We find that existing training-based or zero-shot text detectors are ineffective in detecting code.
Our method exhibits robustness against revision attacks and generalizes well to Java codes.
arXiv Detail & Related papers (2023-10-08T10:08:21Z) - DPIC: Decoupling Prompt and Intrinsic Characteristics for LLM Generated Text Detection [56.513637720967566]
Large language models (LLMs) can generate texts that pose risks of misuse, such as plagiarism, planting fake reviews on e-commerce platforms, or creating inflammatory false tweets.
Existing high-quality detection methods usually require access to the interior of the model to extract the intrinsic characteristics.
We propose to extract deep intrinsic characteristics of the black-box model generated texts.
arXiv Detail & Related papers (2023-05-21T17:26:16Z) - Smaller Language Models are Better Black-box Machine-Generated Text
Detectors [56.36291277897995]
Small and partially-trained models are better universal text detectors.
We find that whether the detector and generator were trained on the same data is not critically important to the detection success.
For instance, the OPT-125M model has an AUC of 0.81 in detecting ChatGPT generations, whereas a larger model from the GPT family, GPTJ-6B, has AUC of 0.45.
arXiv Detail & Related papers (2023-05-17T00:09:08Z) - DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability
Curvature [143.5381108333212]
We show that text sampled from an large language model tends to occupy negative curvature regions of the model's log probability function.
We then define a new curvature-based criterion for judging if a passage is generated from a given LLM.
We find DetectGPT is more discriminative than existing zero-shot methods for model sample detection.
arXiv Detail & Related papers (2023-01-26T18:44:06Z) - Unsupervised and Distributional Detection of Machine-Generated Text [1.552214657968262]
The power of natural language generation models has provoked a flurry of interest in automatic methods to detect if a piece of text is human or machine-authored.
We propose a method to detect those machine-generated documents leveraging repeated higher-order n-grams.
Our experiments show that leveraging that signal allows us to rank suspicious documents accurately.
arXiv Detail & Related papers (2021-11-04T14:07:46Z) - Exploring Software Naturalness through Neural Language Models [56.1315223210742]
The Software Naturalness hypothesis argues that programming languages can be understood through the same techniques used in natural language processing.
We explore this hypothesis through the use of a pre-trained transformer-based language model to perform code analysis tasks.
arXiv Detail & Related papers (2020-06-22T21:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.