論文の概要: Unmasking the Veil: An Investigation into Concept Ablation for Privacy and Copyright Protection in Images
- arxiv url: http://arxiv.org/abs/2406.12592v1
- Date: Tue, 18 Jun 2024 13:22:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 18:58:07.334129
- Title: Unmasking the Veil: An Investigation into Concept Ablation for Privacy and Copyright Protection in Images
- Title(参考訳): ベールを解き放つ:画像におけるプライバシーと著作権保護の概念のアブレーションに関する調査
- Authors: Shivank Garg, Manyana Tiwari,
- Abstract要約: クマリらによる「テキスト・トゥ・イメージ拡散モデルにおけるAblating Concepts in Text-to- Image Diffusion Models」で紹介された事前学習モデルにおける概念アブレーションの研究を拡大する。
本稿では,新しい概念アブレーション,すなわち「商標アブレーション」を導入する。
この変種は、記憶の原理とインスタンスアブレーションを組み合わせて、モデル出力におけるプロプライエタリまたはブランディングされた要素のニュアンスな影響に取り組む。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we extend the study of concept ablation within pre-trained models as introduced in 'Ablating Concepts in Text-to-Image Diffusion Models' by (Kumari et al.,2022). Our work focuses on reproducing the results achieved by the different variants of concept ablation proposed and validated through predefined metrics. We also introduce a novel variant of concept ablation, namely 'trademark ablation'. This variant combines the principles of memorization and instance ablation to tackle the nuanced influence of proprietary or branded elements in model outputs. Further, our research contributions include an observational analysis of the model's limitations. Moreover, we investigate the model's behavior in response to ablation leakage-inducing prompts, which aim to indirectly ablate concepts, revealing insights into the model's resilience and adaptability. We also observe the model's performance degradation on images generated by concepts far from its target ablation concept, documented in the appendix.
- Abstract(参考訳): 本稿では,「テキストから画像への拡散モデルにおけるAblating Concepts in Text-to-Image Diffusion Models」で導入された事前学習モデルにおける概念アブレーションの研究を拡大する(Kumari et al ,2022)。
我々の研究は、事前に定義されたメトリクスを通して提案され、検証された概念の異なる変種によって達成された結果を再現することに焦点を当てている。
また,新しい概念アブレーション,すなわち「商標アブレーション」も導入する。
この変種は、記憶の原理とインスタンスのアブレーションを組み合わせて、モデル出力におけるプロプライエタリな要素やブランド化された要素の微妙な影響に取り組む。
さらに,本研究は,モデルの限界を観察的に分析することを含む。
さらに、間接的に概念をアブレーションし、モデルのレジリエンスと適応性に関する洞察を明らかにするアブレーションリーク誘導プロンプトに応答して、モデルの挙動を考察する。
また,対象のアブレーション概念から遠く離れた概念によって生成された画像に対して,モデルの性能劣化を観察する。
関連論文リスト
- Constructing Concept-based Models to Mitigate Spurious Correlations with Minimal Human Effort [31.992947353231564]
概念ボトルネックモデル(Concept Bottleneck Models, CBM)は、人間の理解可能な概念を通じて、モデルの振る舞いを開示し、導くための原則的な方法を提供する。
本稿では,これらのバイアスに無害でありながら事前学習モデルを活用するために設計された新しいフレームワークを提案する。
提案手法を複数のデータセット上で評価し,その解釈可能性を維持しつつ,素粒子相関によるモデル依存の低減効果を示した。
論文 参考訳(メタデータ) (2024-07-12T03:07:28Z) - Concept Arithmetics for Circumventing Concept Inhibition in Diffusion Models [58.065255696601604]
拡散モデルの合成特性を使い、単一の画像生成において複数のプロンプトを利用することができる。
本論では, 画像生成の可能なすべてのアプローチを, 相手が適用可能な拡散モデルで検討することが重要であると論じる。
論文 参考訳(メタデータ) (2024-04-21T16:35:16Z) - Separable Multi-Concept Erasure from Diffusion Models [52.51972530398691]
大規模拡散モデルから安全でない概念を排除するために,分離可能なマルチコンセプト消去器(SepME)を提案する。
後者は最適化可能なモデルウェイトを分離し、各ウェイトインクリメントは特定の概念の消去に対応する。
広範囲にわたる実験は, 概念の排除, モデル性能の保存, 各種概念の消去・回復における柔軟性の確保に, アプローチの有効性を示すものである。
論文 参考訳(メタデータ) (2024-02-03T11:10:57Z) - An Axiomatic Approach to Model-Agnostic Concept Explanations [67.84000759813435]
本稿では、線形性、再帰性、類似性という3つの自然な公理を満たす概念的説明へのアプローチを提案する。
次に、従来の概念的説明手法とのつながりを確立し、それらの意味の異なる意味についての洞察を提供する。
論文 参考訳(メタデータ) (2024-01-12T20:53:35Z) - On the Equivalence of Consistency-Type Models: Consistency Models,
Consistent Diffusion Models, and Fokker-Planck Regularization [68.13034137660334]
本稿では,異なる目的に対する拡散モデルの拡張を目的とした,最近の3つの一貫性の概念間の理論的関連性を提案する。
私たちの洞察は、一貫性型モデルのためのより包括的で包括的なフレームワークの可能性を提供します。
論文 参考訳(メタデータ) (2023-06-01T05:57:40Z) - Ablating Concepts in Text-to-Image Diffusion Models [57.9371041022838]
大規模テキスト・画像拡散モデルでは、強力な構成能力を持つ高忠実度画像を生成することができる。
これらのモデルは典型的には膨大な量のインターネットデータに基づいて訓練されており、しばしば著作権のある資料、ライセンスされた画像、個人写真を含んでいる。
本稿では,事前訓練されたモデルにおいて,目標概念の生成を防止し,効率的に概念を宣言する手法を提案する。
論文 参考訳(メタデータ) (2023-03-23T17:59:42Z) - Translational Concept Embedding for Generalized Compositional Zero-shot
Learning [73.60639796305415]
一般合成ゼロショット学習は、ゼロショット方式で属性オブジェクト対の合成概念を学習する手段である。
本稿では,これら2つの課題を統一的なフレームワークで解決するために,翻訳概念の埋め込み(translational concept embedded)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-12-20T21:27:51Z) - Debiasing Concept-based Explanations with Causal Analysis [4.911435444514558]
本研究は,特徴の相違する情報と相関する概念の問題点について考察する。
観測されていない変数の影響をモデル化するための新しい因果前グラフを提案する。
提案手法は,概念が完成していない場合に有効であることを示す。
論文 参考訳(メタデータ) (2020-07-22T15:42:46Z) - Capsule Networks -- A Probabilistic Perspective [42.187785678596384]
カプセル」モデルはオブジェクトのポーズを明示的に表現し、オブジェクトのポーズと構成部品のリニアな関係を強制しようとする。
本稿では,このようなカプセル仮定を符号化した確率的生成モデルについて述べる。
統合された目的の応用性を実験的に実証し、我々のモデルにおける償却推論に固有の問題を解決するためのテスト時間最適化の活用を実証する。
論文 参考訳(メタデータ) (2020-04-07T17:26:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。