論文の概要: Reinforcement-Learning based routing for packet-optical networks with hybrid telemetry
- arxiv url: http://arxiv.org/abs/2406.12602v1
- Date: Tue, 18 Jun 2024 13:32:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 18:58:07.325600
- Title: Reinforcement-Learning based routing for packet-optical networks with hybrid telemetry
- Title(参考訳): ハイブリッドテレメトリを用いたパケット光ネットワークの強化学習に基づくルーティング
- Authors: A. L. García Navarro, Nataliia Koneva, Alfonso Sánchez-Macián, José Alberto Hernández, Óscar González de Dios, J. M. Rivas-Moscoso,
- Abstract要約: このアルゴリズムは,FEC前BERで測定したリンク負荷変化やリンク劣化に対する最適ポリシーを再計算することにより,ネットワーク条件の変化に動的に適応することを示した。
- 参考スコア(独自算出の注目度): 0.3848364262836075
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article provides a methodology and open-source implementation of Reinforcement Learning algorithms for finding optimal routes in a packet-optical network scenario. The algorithm uses measurements provided by the physical layer (pre-FEC bit error rate and propagation delay) and the link layer (link load) to configure a set of latency-based rewards and penalties based on such measurements. Then, the algorithm executes Q-learning based on this set of rewards for finding the optimal routing strategies. It is further shown that the algorithm dynamically adapts to changing network conditions by re-calculating optimal policies upon either link load changes or link degradation as measured by pre-FEC BER.
- Abstract(参考訳): 本稿では,パケット-光ネットワークシナリオにおける最適経路を見つけるための強化学習アルゴリズムの方法論とオープンソース実装について述べる。
このアルゴリズムは、物理層(前FECビットエラー率と伝搬遅延)とリンク層(リンク負荷)によって提供される測定値を用いて、そのような測定値に基づいてレイテンシベースの報酬と罰則のセットを構成する。
そして、最適なルーティング戦略を見つけるために、この一連の報酬に基づいてQ-ラーニングを実行する。
さらに, 前FEC BERで測定したリンク負荷変化やリンク劣化に対する最適ポリシーの再計算により, ネットワーク条件の変化に動的に適応することを示した。
関連論文リスト
- Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
我々は,学習エポックの数の増加とともに,ほぼゼロに近いトレーニング損失を達成するための最適化保証について検討した。
トレーニングサンプル数に対する閾値は,ネットワーク幅の増加とともに増加することを示す。
論文 参考訳(メタデータ) (2023-09-12T13:03:47Z) - Deep Learning Meets Adaptive Filtering: A Stein's Unbiased Risk
Estimator Approach [13.887632153924512]
本稿では,Deep RLSとDeep EASIというタスクベースのディープラーニングフレームワークを紹介する。
これらのアーキテクチャは、元のアルゴリズムの繰り返しをディープニューラルネットワークの層に変換し、効率的なソース信号推定を可能にする。
性能をさらに向上するために、我々は、スタインの非バイアスリスク推定器(SURE)に基づく代理損失関数を用いた、これらの深層無ロールネットワークのトレーニングを提案する。
論文 参考訳(メタデータ) (2023-07-31T14:26:41Z) - Thompson sampling for improved exploration in GFlowNets [75.89693358516944]
生成フローネットワーク(Generative Flow Networks, GFlowNets)は、合成対象物上の分布からのサンプリングを、学習可能なアクションポリシーを用いたシーケンシャルな意思決定問題として扱う、アモータイズされた変分推論アルゴリズムである。
2つの領域において、TS-GFNは、過去の研究で使われたオフ・ポリティクス・サーベイ・ストラテジーよりも、探索を改善し、目標分布への収束を早くすることを示す。
論文 参考訳(メタデータ) (2023-06-30T14:19:44Z) - Acceleration in Policy Optimization [50.323182853069184]
我々は、楽観的かつ適応的な更新を通じて、政策改善のステップにフォレストを組み込むことにより、強化学習(RL)における政策最適化手法を加速するための統一パラダイムに向けて研究する。
我々は、楽観主義を、政策の将来行動の予測モデルとして定義し、適応性は、過度な予測や変化に対する遅延反応からエラーを軽減するために、即時かつ予測的な修正措置をとるものである。
我々は,メタグラディエント学習による適応型楽観的ポリシー勾配アルゴリズムを設計し,実証的なタスクにおいて,加速度に関連するいくつかの設計選択を実証的に強調する。
論文 参考訳(メタデータ) (2023-06-18T15:50:57Z) - Active RIS-aided EH-NOMA Networks: A Deep Reinforcement Learning
Approach [66.53364438507208]
アクティブな再構成可能なインテリジェントサーフェス(RIS)支援マルチユーザダウンリンク通信システムについて検討した。
非直交多重アクセス(NOMA)はスペクトル効率を向上させるために使用され、活性RISはエネルギー回収(EH)によって駆動される。
ユーザの動的通信状態を予測するために,高度なLSTMベースのアルゴリズムを開発した。
増幅行列と位相シフト行列RISを結合制御するためにDDPGに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-11T13:16:28Z) - UAV Path Planning Employing MPC- Reinforcement Learning Method for
search and rescue mission [0.0]
複雑で不確実な環境での無人航空路計画(UA V)の課題に取り組む。
本稿では,Long-Short-Term Memory (LSTM) ネットワークに基づくモデル予測制御(MPC)を,Deep Deterministic Policy Gradientアルゴリズムに統合して設計する。
論文 参考訳(メタデータ) (2023-02-21T13:39:40Z) - Proactive Resilient Transmission and Scheduling Mechanisms for mmWave
Networks [29.17280879786624]
本稿では、任意のミリ波(mmWave)ネットワークにおいて、複数の経路にまたがるトラフィックを適切に分散するレジリエント伝送機構を開発することを目的とする。
リンク障害に対するレジリエンスを実現するため,ネットワークを介した情報の流れに適応する最先端のソフトアクタ・クリティカルDRLについて検討した。
論文 参考訳(メタデータ) (2022-11-17T02:52:27Z) - MAMRL: Exploiting Multi-agent Meta Reinforcement Learning in WAN Traffic
Engineering [4.051011665760136]
ロードバランシングやフロースケジューリング、パケット配信時間の改善といったトラフィック最適化の課題は、広域ネットワーク(WAN)におけるオンライン意思決定の問題である。
我々は,マルチエージェントメタ強化学習(MAMRL)を用いて,各パケットの次ホップを最小限の時間で決定できるモデルフリーアプローチを開発し,評価する。
論文 参考訳(メタデータ) (2021-11-30T03:01:01Z) - Fidelity-Guarantee Entanglement Routing in Quantum Networks [64.49733801962198]
絡み合いルーティングは、2つの任意のノード間のリモート絡み合い接続を確立する。
量子ネットワークにおける複数のソース・デスティネーション(SD)ペアの忠実性を保証するために、精製可能な絡み合わせルーティング設計を提案する。
論文 参考訳(メタデータ) (2021-11-15T14:07:22Z) - Relational Deep Reinforcement Learning for Routing in Wireless Networks [2.997420836766863]
我々は,トラフィックパターン,混雑レベル,ネットワーク接続性,リンクダイナミクスを一般化した,深層強化学習に基づく分散ルーティング戦略を開発した。
提案アルゴリズムは,パケットの配送やパケット毎の遅延に対して,最短経路とバックプレッシャルーティングに優れる。
論文 参考訳(メタデータ) (2020-12-31T16:28:21Z) - Meta-Reinforcement Learning for Trajectory Design in Wireless UAV
Networks [151.65541208130995]
ドローン基地局(DBS)は、要求が動的で予測不可能な地上ユーザーへのアップリンク接続を提供するために派遣される。
この場合、DBSの軌道は動的ユーザアクセス要求を満たすように適応的に調整されなければならない。
新たな環境に遭遇したDBSの軌道に適応するために,メタラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-25T20:43:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。