Reinforcement-Learning based routing for packet-optical networks with hybrid telemetry
- URL: http://arxiv.org/abs/2406.12602v2
- Date: Fri, 21 Jun 2024 14:35:08 GMT
- Title: Reinforcement-Learning based routing for packet-optical networks with hybrid telemetry
- Authors: A. L. García Navarro, Nataliia Koneva, Alfonso Sánchez-Macián, José Alberto Hernández, Óscar González de Dios, J. M. Rivas-Moscoso,
- Abstract summary: It is shown that the algorithm dynamically adapts to changing network conditions by re-calculating optimal policies upon either link load changes or link degradation as measured by pre-FEC BER.
- Score: 0.3848364262836075
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article provides a methodology and open-source implementation of Reinforcement Learning algorithms for finding optimal routes in a packet-optical network scenario. The algorithm uses measurements provided by the physical layer (pre-FEC bit error rate and propagation delay) and the link layer (link load) to configure a set of latency-based rewards and penalties based on such measurements. Then, the algorithm executes Q-learning based on this set of rewards for finding the optimal routing strategies. It is further shown that the algorithm dynamically adapts to changing network conditions by re-calculating optimal policies upon either link load changes or link degradation as measured by pre-FEC BER.
Related papers
- Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
We study optimization guarantees, i.e., achieving near-zero training loss with the increase in the number of learning epochs.
We show that the threshold on the number of training samples increases with the increase in the network width.
arXiv Detail & Related papers (2023-09-12T13:03:47Z) - Deep Learning Meets Adaptive Filtering: A Stein's Unbiased Risk
Estimator Approach [13.887632153924512]
We introduce task-based deep learning frameworks, denoted as Deep RLS and Deep EASI.
These architectures transform the iterations of the original algorithms into layers of a deep neural network, enabling efficient source signal estimation.
To further enhance performance, we propose training these deep unrolled networks utilizing a surrogate loss function grounded on Stein's unbiased risk estimator (SURE)
arXiv Detail & Related papers (2023-07-31T14:26:41Z) - Thompson sampling for improved exploration in GFlowNets [75.89693358516944]
Generative flow networks (GFlowNets) are amortized variational inference algorithms that treat sampling from a distribution over compositional objects as a sequential decision-making problem with a learnable action policy.
We show in two domains that TS-GFN yields improved exploration and thus faster convergence to the target distribution than the off-policy exploration strategies used in past work.
arXiv Detail & Related papers (2023-06-30T14:19:44Z) - Acceleration in Policy Optimization [50.323182853069184]
We work towards a unifying paradigm for accelerating policy optimization methods in reinforcement learning (RL) by integrating foresight in the policy improvement step via optimistic and adaptive updates.
We define optimism as predictive modelling of the future behavior of a policy, and adaptivity as taking immediate and anticipatory corrective actions to mitigate errors from overshooting predictions or delayed responses to change.
We design an optimistic policy gradient algorithm, adaptive via meta-gradient learning, and empirically highlight several design choices pertaining to acceleration, in an illustrative task.
arXiv Detail & Related papers (2023-06-18T15:50:57Z) - Active RIS-aided EH-NOMA Networks: A Deep Reinforcement Learning
Approach [66.53364438507208]
An active reconfigurable intelligent surface (RIS)-aided multi-user downlink communication system is investigated.
Non-orthogonal multiple access (NOMA) is employed to improve spectral efficiency, and the active RIS is powered by energy harvesting (EH)
An advanced LSTM based algorithm is developed to predict users' dynamic communication state.
A DDPG based algorithm is proposed to joint control the amplification matrix and phase shift matrix RIS.
arXiv Detail & Related papers (2023-04-11T13:16:28Z) - UAV Path Planning Employing MPC- Reinforcement Learning Method for
search and rescue mission [0.0]
We tackle the problem of Unmanned Aerial (UA V) path planning in complex and uncertain environments.
We design a Model Predictive Control (MPC) based on a Long-Short-Term Memory (LSTM) network integrated into the Deep Deterministic Policy Gradient algorithm.
arXiv Detail & Related papers (2023-02-21T13:39:40Z) - Proactive Resilient Transmission and Scheduling Mechanisms for mmWave
Networks [29.17280879786624]
This paper aims to develop resilient transmission mechanisms to suitably distribute traffic across multiple paths in an arbitrary millimeter-wave (mmWave) network.
To achieve resilience to link failures, a state-of-the-art Soft Actor-Critic DRL, which adapts the information flow through the network, is investigated.
arXiv Detail & Related papers (2022-11-17T02:52:27Z) - MAMRL: Exploiting Multi-agent Meta Reinforcement Learning in WAN Traffic
Engineering [4.051011665760136]
Traffic optimization challenges, such as load balancing, flow scheduling, and improving packet delivery time, are difficult online decision-making problems in wide area networks (WAN)
We develop and evaluate a model-free approach, applying multi-agent meta reinforcement learning (MAMRL) that can determine the next-hop of each packet to get it delivered to its destination with minimum time overall.
arXiv Detail & Related papers (2021-11-30T03:01:01Z) - Fidelity-Guarantee Entanglement Routing in Quantum Networks [64.49733801962198]
Entanglement routing establishes remote entanglement connection between two arbitrary nodes.
We propose purification-enabled entanglement routing designs to provide fidelity guarantee for multiple Source-Destination (SD) pairs in quantum networks.
arXiv Detail & Related papers (2021-11-15T14:07:22Z) - Relational Deep Reinforcement Learning for Routing in Wireless Networks [2.997420836766863]
We develop a distributed routing strategy based on deep reinforcement learning that generalizes to diverse traffic patterns, congestion levels, network connectivity, and link dynamics.
Our algorithm outperforms shortest path and backpressure routing with respect to packets delivered and delay per packet.
arXiv Detail & Related papers (2020-12-31T16:28:21Z) - Meta-Reinforcement Learning for Trajectory Design in Wireless UAV
Networks [151.65541208130995]
A drone base station (DBS) is dispatched to provide uplink connectivity to ground users whose demand is dynamic and unpredictable.
In this case, the DBS's trajectory must be adaptively adjusted to satisfy the dynamic user access requests.
A meta-learning algorithm is proposed in order to adapt the DBS's trajectory when it encounters novel environments.
arXiv Detail & Related papers (2020-05-25T20:43:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.