Learned Image Compression for HE-stained Histopathological Images via Stain Deconvolution
- URL: http://arxiv.org/abs/2406.12623v1
- Date: Tue, 18 Jun 2024 13:47:17 GMT
- Title: Learned Image Compression for HE-stained Histopathological Images via Stain Deconvolution
- Authors: Maximilian Fischer, Peter Neher, Tassilo Wald, Silvia Dias Almeida, Shuhan Xiao, Peter Schüffler, Rickmer Braren, Michael Götz, Alexander Muckenhuber, Jens Kleesiek, Marco Nolden, Klaus Maier-Hein,
- Abstract summary: In this paper, we show that the commonly used JPEG algorithm is not best suited for further compression.
We propose Stain Quantized Latent Compression, a novel DL based histopathology data compression approach.
We show that our approach yields superior performance in a classification downstream task, compared to traditional approaches like JPEG.
- Score: 33.69980388844034
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Processing histopathological Whole Slide Images (WSI) leads to massive storage requirements for clinics worldwide. Even after lossy image compression during image acquisition, additional lossy compression is frequently possible without substantially affecting the performance of deep learning-based (DL) downstream tasks. In this paper, we show that the commonly used JPEG algorithm is not best suited for further compression and we propose Stain Quantized Latent Compression (SQLC ), a novel DL based histopathology data compression approach. SQLC compresses staining and RGB channels before passing it through a compression autoencoder (CAE ) in order to obtain quantized latent representations for maximizing the compression. We show that our approach yields superior performance in a classification downstream task, compared to traditional approaches like JPEG, while image quality metrics like the Multi-Scale Structural Similarity Index (MS-SSIM) is largely preserved. Our method is online available.
Related papers
- Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks.
We introduce a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules.
arXiv Detail & Related papers (2024-01-06T03:03:28Z) - CompaCT: Fractal-Based Heuristic Pixel Segmentation for Lossless Compression of High-Color DICOM Medical Images [0.0]
Medical images require a high color depth of 12 bits per pixel component for accurate analysis by physicians.
Standard-based compression of images via filtering is well-known; however, it remains suboptimal in the medical domain due to non-specialized implementations.
This study proposes a medical image compression algorithm, CompaCT, that aims to target spatial features and patterns of pixel concentration for dynamically enhanced data processing.
arXiv Detail & Related papers (2023-08-24T21:43:04Z) - Extreme Image Compression using Fine-tuned VQGANs [43.43014096929809]
We introduce vector quantization (VQ)-based generative models into the image compression domain.
The codebook learned by the VQGAN model yields a strong expressive capacity.
The proposed framework outperforms state-of-the-art codecs in terms of perceptual quality-oriented metrics.
arXiv Detail & Related papers (2023-07-17T06:14:19Z) - Learned Lossless Compression for JPEG via Frequency-Domain Prediction [50.20577108662153]
We propose a novel framework for learned lossless compression of JPEG images.
To enable learning in the frequency domain, DCT coefficients are partitioned into groups to utilize implicit local redundancy.
An autoencoder-like architecture is designed based on the weight-shared blocks to realize entropy modeling of grouped DCT coefficients.
arXiv Detail & Related papers (2023-03-05T13:15:28Z) - Cross Modal Compression: Towards Human-comprehensible Semantic
Compression [73.89616626853913]
Cross modal compression is a semantic compression framework for visual data.
We show that our proposed CMC can achieve encouraging reconstructed results with an ultrahigh compression ratio.
arXiv Detail & Related papers (2022-09-06T15:31:11Z) - Learned Lossless JPEG Transcoding via Joint Lossy and Residual
Compression [21.205453851414248]
We propose a new framework to recompress the compressed JPEG image in the DCT domain.
Our proposed framework can achieve about 21.49% bits saving in average based on JPEG compression.
Our experiments on multiple datasets have demonstrated that our proposed framework can achieve about 21.49% bits saving in average based on JPEG compression.
arXiv Detail & Related papers (2022-08-24T17:12:00Z) - Early Exit or Not: Resource-Efficient Blind Quality Enhancement for
Compressed Images [54.40852143927333]
Lossy image compression is pervasively conducted to save communication bandwidth, resulting in undesirable compression artifacts.
We propose a resource-efficient blind quality enhancement (RBQE) approach for compressed images.
Our approach can automatically decide to terminate or continue enhancement according to the assessed quality of enhanced images.
arXiv Detail & Related papers (2020-06-30T07:38:47Z) - Learning Better Lossless Compression Using Lossy Compression [100.50156325096611]
We leverage the powerful lossy image compression algorithm BPG to build a lossless image compression system.
We model the distribution of the residual with a convolutional neural network-based probabilistic model that is conditioned on the BPG reconstruction.
Finally, the image is stored using the concatenation of the bitstreams produced by BPG and the learned residual coder.
arXiv Detail & Related papers (2020-03-23T11:21:52Z) - Discernible Image Compression [124.08063151879173]
This paper aims to produce compressed images by pursuing both appearance and perceptual consistency.
Based on the encoder-decoder framework, we propose using a pre-trained CNN to extract features of the original and compressed images.
Experiments on benchmarks demonstrate that images compressed by using the proposed method can also be well recognized by subsequent visual recognition and detection models.
arXiv Detail & Related papers (2020-02-17T07:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.