Pathology Image Compression with Pre-trained Autoencoders
- URL: http://arxiv.org/abs/2503.11591v1
- Date: Fri, 14 Mar 2025 17:01:17 GMT
- Title: Pathology Image Compression with Pre-trained Autoencoders
- Authors: Srikar Yellapragada, Alexandros Graikos, Kostas Triaridis, Zilinghan Li, Tarak Nath Nandi, Ravi K Madduri, Prateek Prasanna, Joel Saltz, Dimitris Samaras,
- Abstract summary: Whole Slide Images in digital histopathology pose significant storage, transmission, and computational efficiency challenges.<n>Standard compression methods, such as JPEG, reduce file sizes but fail to preserve fine-grained phenotypic details critical for downstream tasks.<n>In this work, we repurpose autoencoders (AEs) designed for Latent Diffusion Models as an efficient learned compression framework for pathology images.
- Score: 52.208181380986524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing volume of high-resolution Whole Slide Images in digital histopathology poses significant storage, transmission, and computational efficiency challenges. Standard compression methods, such as JPEG, reduce file sizes but often fail to preserve fine-grained phenotypic details critical for downstream tasks. In this work, we repurpose autoencoders (AEs) designed for Latent Diffusion Models as an efficient learned compression framework for pathology images. We systematically benchmark three AE models with varying compression levels and evaluate their reconstruction ability using pathology foundation models. We introduce a fine-tuning strategy to further enhance reconstruction fidelity that optimizes a pathology-specific learned perceptual metric. We validate our approach on downstream tasks, including segmentation, patch classification, and multiple instance learning, showing that replacing images with AE-compressed reconstructions leads to minimal performance degradation. Additionally, we propose a K-means clustering-based quantization method for AE latents, improving storage efficiency while maintaining reconstruction quality. We provide the weights of the fine-tuned autoencoders at https://huggingface.co/collections/StonyBrook-CVLab/pathology-fine-tuned-aes-67d45f223a659ff2e3402dd 0.
Related papers
- Learned Image Compression and Restoration for Digital Pathology [3.7263231077138608]
Digital pathology images play a crucial role in medical diagnostics, but their ultra-high resolution and large file sizes pose significant challenges for storage, transmission, and real-time visualization.
We propose CLERIC, a novel deep learning-based image compression framework designed specifically for whole slide images (WSIs)
CLERIC integrates a learnable lifting scheme and advanced convolutional techniques to enhance compression efficiency while preserving critical pathological details.
arXiv Detail & Related papers (2025-03-31T09:09:09Z) - Hierarchical Semantic Compression for Consistent Image Semantic Restoration [62.97519327310638]
We propose a novel hierarchical semantic compression (HSC) framework that purely operates within intrinsic semantic spaces from generative models.<n> Experimental results demonstrate that the proposed HSC framework achieves the state-of-the-art performance on subjective quality and consistency for human vision.
arXiv Detail & Related papers (2025-02-24T03:20:44Z) - CALLIC: Content Adaptive Learning for Lossless Image Compression [64.47244912937204]
CALLIC sets a new state-of-the-art (SOTA) for learned lossless image compression.<n>We propose a content-aware autoregressive self-attention mechanism by leveraging convolutional gating operations.<n>During encoding, we decompose pre-trained layers, including depth-wise convolutions, using low-rank matrices and then adapt the incremental weights on testing image by Rate-guided Progressive Fine-Tuning (RPFT)<n>RPFT fine-tunes with gradually increasing patches that are sorted in descending order by estimated entropy, optimizing learning process and reducing adaptation time.
arXiv Detail & Related papers (2024-12-23T10:41:18Z) - Learned Image Compression for HE-stained Histopathological Images via Stain Deconvolution [33.69980388844034]
In this paper, we show that the commonly used JPEG algorithm is not best suited for further compression.
We propose Stain Quantized Latent Compression, a novel DL based histopathology data compression approach.
We show that our approach yields superior performance in a classification downstream task, compared to traditional approaches like JPEG.
arXiv Detail & Related papers (2024-06-18T13:47:17Z) - Generalized Nested Latent Variable Models for Lossy Coding applied to Wind Turbine Scenarios [14.48369551534582]
A learning-based approach seeks to minimize the compromise between compression rate and reconstructed image quality.
A successful technique consists in introducing a deep hyperprior that operates within a 2-level nested latent variable model.
This paper extends this concept by designing a generalized L-level nested generative model with a Markov chain structure.
arXiv Detail & Related papers (2024-06-10T11:00:26Z) - Robustly overfitting latents for flexible neural image compression [1.7041035606170198]
State-of-the-art neural image compression models learn to encode an image into a quantized latent representation that can be efficiently sent to the decoder.
These models have proven successful in practice, but they lead to sub-optimal results due to imperfect optimization and limitations in the encoder and decoder capacity.
Recent work shows how to use Gumbel annealing (SGA) to refine the latents of pre-trained neural image compression models.
We show how our method improves the overall compression performance in terms of the R-D trade-off, compared to its predecessors.
arXiv Detail & Related papers (2024-01-31T12:32:17Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks.
We introduce a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules.
arXiv Detail & Related papers (2024-01-06T03:03:28Z) - Extreme Image Compression using Fine-tuned VQGANs [43.43014096929809]
We introduce vector quantization (VQ)-based generative models into the image compression domain.
The codebook learned by the VQGAN model yields a strong expressive capacity.
The proposed framework outperforms state-of-the-art codecs in terms of perceptual quality-oriented metrics.
arXiv Detail & Related papers (2023-07-17T06:14:19Z) - Lossy Image Compression with Conditional Diffusion Models [25.158390422252097]
This paper outlines an end-to-end optimized lossy image compression framework using diffusion generative models.
In contrast to VAE-based neural compression, where the (mean) decoder is a deterministic neural network, our decoder is a conditional diffusion model.
Our approach yields stronger reported FID scores than the GAN-based model, while also yielding competitive performance with VAE-based models in several distortion metrics.
arXiv Detail & Related papers (2022-09-14T21:53:27Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.