Online-Adaptive Anomaly Detection for Defect Identification in Aircraft Assembly
- URL: http://arxiv.org/abs/2406.12698v1
- Date: Tue, 18 Jun 2024 15:11:44 GMT
- Title: Online-Adaptive Anomaly Detection for Defect Identification in Aircraft Assembly
- Authors: Siddhant Shete, Dennis Mronga, Ankita Jadhav, Frank Kirchner,
- Abstract summary: Anomaly detection deals with detecting deviations from established patterns within data.
We propose a novel framework for online-adaptive anomaly detection using transfer learning.
Experimental results showcase a detection accuracy exceeding 0.975, outperforming the state-of-the-art ET-NET approach.
- Score: 4.387337528923525
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Anomaly detection deals with detecting deviations from established patterns within data. It has various applications like autonomous driving, predictive maintenance, and medical diagnosis. To improve anomaly detection accuracy, transfer learning can be applied to large, pre-trained models and adapt them to the specific application context. In this paper, we propose a novel framework for online-adaptive anomaly detection using transfer learning. The approach adapts to different environments by selecting visually similar training images and online fitting a normality model to EfficientNet features extracted from the training subset. Anomaly detection is then performed by computing the Mahalanobis distance between the normality model and the test image features. Different similarity measures (SIFT/FLANN, Cosine) and normality models (MVG, OCSVM) are employed and compared with each other. We evaluate the approach on different anomaly detection benchmarks and data collected in controlled laboratory settings. Experimental results showcase a detection accuracy exceeding 0.975, outperforming the state-of-the-art ET-NET approach.
Related papers
- Systematic Review: Anomaly Detection in Connected and Autonomous Vehicles [0.0]
This systematic review focuses on anomaly detection for connected and autonomous vehicles.
The most commonly used Artificial Intelligence (AI) algorithms employed in anomaly detection are neural networks like LSTM, CNN, and autoencoders, alongside one-class SVM.
There is a need for future research to investigate the deployment of anomaly detection to a vehicle to assess its performance on the road.
arXiv Detail & Related papers (2024-05-04T18:31:38Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - TracInAD: Measuring Influence for Anomaly Detection [0.0]
This paper proposes a novel methodology to flag anomalies based on TracIn.
We test our approach using Variational Autoencoders and show that the average influence of a subsample of training points on a test point can serve as a proxy for abnormality.
arXiv Detail & Related papers (2022-05-03T08:20:15Z) - On-the-Fly Test-time Adaptation for Medical Image Segmentation [63.476899335138164]
Adapting the source model to target data distribution at test-time is an efficient solution for the data-shift problem.
We propose a new framework called Adaptive UNet where each convolutional block is equipped with an adaptive batch normalization layer.
During test-time, the model takes in just the new test image and generates a domain code to adapt the features of source model according to the test data.
arXiv Detail & Related papers (2022-03-10T18:51:29Z) - Simple Adaptive Projection with Pretrained Features for Anomaly
Detection [0.0]
We propose a novel adaptation framework including simple linear transformation and self-attention.
Our simple adaptive projection with pretrained features(SAP2) yields a novel anomaly detection criterion.
arXiv Detail & Related papers (2021-12-05T15:29:59Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
We propose a neural network-based meta-learning method for supervised anomaly detection.
We experimentally demonstrate that the proposed method achieves better performance than existing anomaly detection and few-shot learning methods.
arXiv Detail & Related papers (2021-03-01T01:43:04Z) - A Transfer Learning Framework for Anomaly Detection Using Model of
Normality [2.9685635948299995]
Convolutional Neural Network (CNN) techniques have proven to be very useful in image-based anomaly detection applications.
We introduce a transfer learning framework for anomaly detection based on similarity measure with a Model of Normality (MoN)
We show that with the proposed threshold settings, a significant performance improvement can be achieved.
arXiv Detail & Related papers (2020-11-12T05:26:32Z) - Dynamic Bayesian Approach for decision-making in Ego-Things [8.577234269009042]
This paper presents a novel approach to detect abnormalities in dynamic systems based on multisensory data and feature selection.
Growing neural gas (GNG) is employed for clustering multisensory data into a set of nodes.
Our method uses a Markov Jump particle filter (MJPF) for state estimation and abnormality detection.
arXiv Detail & Related papers (2020-10-28T11:38:51Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.