TSI-Bench: Benchmarking Time Series Imputation
- URL: http://arxiv.org/abs/2406.12747v2
- Date: Thu, 31 Oct 2024 17:18:16 GMT
- Title: TSI-Bench: Benchmarking Time Series Imputation
- Authors: Wenjie Du, Jun Wang, Linglong Qian, Yiyuan Yang, Zina Ibrahim, Fanxing Liu, Zepu Wang, Haoxin Liu, Zhiyuan Zhao, Yingjie Zhou, Wenjia Wang, Kaize Ding, Yuxuan Liang, B. Aditya Prakash, Qingsong Wen,
- Abstract summary: TSI-Bench is a comprehensive benchmark suite for time series imputation utilizing deep learning techniques.
The TSI-Bench pipeline standardizes experimental settings to enable fair evaluation of imputation algorithms.
TSI-Bench innovatively provides a systematic paradigm to tailor time series forecasting algorithms for imputation purposes.
- Score: 52.27004336123575
- License:
- Abstract: Effective imputation is a crucial preprocessing step for time series analysis. Despite the development of numerous deep learning algorithms for time series imputation, the community lacks standardized and comprehensive benchmark platforms to effectively evaluate imputation performance across different settings. Moreover, although many deep learning forecasting algorithms have demonstrated excellent performance, whether their modelling achievements can be transferred to time series imputation tasks remains unexplored. To bridge these gaps, we develop TSI-Bench, the first (to our knowledge) comprehensive benchmark suite for time series imputation utilizing deep learning techniques. The TSI-Bench pipeline standardizes experimental settings to enable fair evaluation of imputation algorithms and identification of meaningful insights into the influence of domain-appropriate missing rates and patterns on model performance. Furthermore, TSI-Bench innovatively provides a systematic paradigm to tailor time series forecasting algorithms for imputation purposes. Our extensive study across 34,804 experiments, 28 algorithms, and 8 datasets with diverse missingness scenarios demonstrates TSI-Bench's effectiveness in diverse downstream tasks and potential to unlock future directions in time series imputation research and analysis. All source code and experiment logs are released at https://github.com/WenjieDu/AwesomeImputation.
Related papers
- Deep Time Series Models: A Comprehensive Survey and Benchmark [74.28364194333447]
Time series data is of great significance in real-world scenarios.
Recent years have witnessed remarkable breakthroughs in the time series community.
We release Time Series Library (TSLib) as a fair benchmark of deep time series models for diverse analysis tasks.
arXiv Detail & Related papers (2024-07-18T08:31:55Z) - TimeSeriesBench: An Industrial-Grade Benchmark for Time Series Anomaly Detection Models [21.658019069964755]
Time series anomaly detection (TSAD) has gained significant attention due to its real-world applications.
There is no effective way to verify whether TSAD can meet the requirements for real-world deployment.
We propose an industrial-grade benchmark TimeSeriesBench to assess the performance of existing algorithms.
arXiv Detail & Related papers (2024-02-16T16:25:20Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks.
This paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks.
arXiv Detail & Related papers (2024-02-04T13:10:51Z) - DIVERSIFY: A General Framework for Time Series Out-of-distribution
Detection and Generalization [58.704753031608625]
Time series is one of the most challenging modalities in machine learning research.
OOD detection and generalization on time series tend to suffer due to its non-stationary property.
We propose DIVERSIFY, a framework for OOD detection and generalization on dynamic distributions of time series.
arXiv Detail & Related papers (2023-08-04T12:27:11Z) - Automatic Feature Engineering for Time Series Classification: Evaluation
and Discussion [0.0]
Time Series Classification (TSC) is a crucial and challenging problem in data science and knowledge engineering.
Several tools for extracting unsupervised informative summary statistics, aka features, from time series have been designed in the recent years.
In this article, we propose a simple TSC process to evaluate the potential predictive performance of the feature sets obtained with existing feature engineering tools.
arXiv Detail & Related papers (2023-08-02T10:46:42Z) - Time Series Contrastive Learning with Information-Aware Augmentations [57.45139904366001]
A key component of contrastive learning is to select appropriate augmentations imposing some priors to construct feasible positive samples.
How to find the desired augmentations of time series data that are meaningful for given contrastive learning tasks and datasets remains an open question.
We propose a new contrastive learning approach with information-aware augmentations, InfoTS, that adaptively selects optimal augmentations for time series representation learning.
arXiv Detail & Related papers (2023-03-21T15:02:50Z) - Early Time-Series Classification Algorithms: An Empirical Comparison [59.82930053437851]
Early Time-Series Classification (ETSC) is the task of predicting the class of incoming time-series by observing as few measurements as possible.
We evaluate six existing ETSC algorithms on publicly available data, as well as on two newly introduced datasets.
arXiv Detail & Related papers (2022-03-03T10:43:56Z) - SAITS: Self-Attention-based Imputation for Time Series [6.321652307514677]
SAITS is a novel method based on the self-attention mechanism for missing value imputation in time series.
It learns missing values from a weighted combination of two diagonally-masked self-attention blocks.
Tests show SAITS outperforms state-of-the-art methods on the time-series imputation task efficiently.
arXiv Detail & Related papers (2022-02-17T08:40:42Z) - Temporal Dependencies in Feature Importance for Time Series Predictions [4.082348823209183]
We propose WinIT, a framework for evaluating feature importance in time series prediction settings.
We demonstrate how the solution improves the appropriate attribution of features within time steps.
WinIT achieves 2.47x better performance than FIT and other feature importance methods on real-world clinical MIMIC-mortality task.
arXiv Detail & Related papers (2021-07-29T20:31:03Z) - Benchmarking Deep Learning Interpretability in Time Series Predictions [41.13847656750174]
Saliency methods are used extensively to highlight the importance of input features in model predictions.
We set out to extensively compare the performance of various saliency-based interpretability methods across diverse neural architectures.
arXiv Detail & Related papers (2020-10-26T22:07:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.