TimeSeriesBench: An Industrial-Grade Benchmark for Time Series Anomaly Detection Models
- URL: http://arxiv.org/abs/2402.10802v3
- Date: Tue, 3 Sep 2024 02:37:48 GMT
- Title: TimeSeriesBench: An Industrial-Grade Benchmark for Time Series Anomaly Detection Models
- Authors: Haotian Si, Jianhui Li, Changhua Pei, Hang Cui, Jingwen Yang, Yongqian Sun, Shenglin Zhang, Jingjing Li, Haiming Zhang, Jing Han, Dan Pei, Gaogang Xie,
- Abstract summary: Time series anomaly detection (TSAD) has gained significant attention due to its real-world applications.
There is no effective way to verify whether TSAD can meet the requirements for real-world deployment.
We propose an industrial-grade benchmark TimeSeriesBench to assess the performance of existing algorithms.
- Score: 21.658019069964755
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series anomaly detection (TSAD) has gained significant attention due to its real-world applications to improve the stability of modern software systems. However, there is no effective way to verify whether they can meet the requirements for real-world deployment. Firstly, current algorithms typically train a specific model for each time series. Maintaining such many models is impractical in a large-scale system with tens of thousands of curves. The performance of using merely one unified model to detect anomalies remains unknown. Secondly, most TSAD models are trained on the historical part of a time series and are tested on its future segment. In distributed systems, however, there are frequent system deployments and upgrades, with new, previously unseen time series emerging daily. The performance of testing newly incoming unseen time series on current TSAD algorithms remains unknown. Lastly, the assumptions of the evaluation metrics in existing benchmarks are far from practical demands. To solve the above-mentioned problems, we propose an industrial-grade benchmark TimeSeriesBench. We assess the performance of existing algorithms across more than 168 evaluation settings and provide comprehensive analysis for the future design of anomaly detection algorithms. An industrial dataset is also released along with TimeSeriesBench.
Related papers
- Deep Time Series Models: A Comprehensive Survey and Benchmark [74.28364194333447]
Time series data is of great significance in real-world scenarios.
Recent years have witnessed remarkable breakthroughs in the time series community.
We release Time Series Library (TSLib) as a fair benchmark of deep time series models for diverse analysis tasks.
arXiv Detail & Related papers (2024-07-18T08:31:55Z) - TSI-Bench: Benchmarking Time Series Imputation [52.27004336123575]
TSI-Bench is a comprehensive benchmark suite for time series imputation utilizing deep learning techniques.
The TSI-Bench pipeline standardizes experimental settings to enable fair evaluation of imputation algorithms.
TSI-Bench innovatively provides a systematic paradigm to tailor time series forecasting algorithms for imputation purposes.
arXiv Detail & Related papers (2024-06-18T16:07:33Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Making the End-User a Priority in Benchmarking: OrionBench for
Unsupervised Time Series Anomaly Detection [9.054540533394924]
Time series anomaly detection is a prevalent problem in many application domains such as patient monitoring in healthcare, forecasting in finance, or predictive maintenance in energy.
We propose OrionBench -- a user centric continuously maintained benchmark for unsupervised time series anomaly detection.
We demonstrate the usage of OrionBench, and the progression of pipelines across 16 releases published over the course of three years.
arXiv Detail & Related papers (2023-10-26T19:43:16Z) - TFAD: A Decomposition Time Series Anomaly Detection Architecture with
Time-Frequency Analysis [12.867257563413972]
Time series anomaly detection is a challenging problem due to the complex temporal dependencies and the limited label data.
We propose a Time-Frequency analysis based time series Anomaly Detection model, or TFAD, to exploit both time and frequency domains for performance improvement.
arXiv Detail & Related papers (2022-10-18T09:08:57Z) - Multi-scale Anomaly Detection for Big Time Series of Industrial Sensors [50.6434162489902]
We propose a reconstruction-based anomaly detection method, MissGAN, iteratively learning to decode and encode naturally smooth time series.
MissGAN does not need labels or only needs labels of normal instances, making it widely applicable.
arXiv Detail & Related papers (2022-04-18T04:34:15Z) - Deep Generative model with Hierarchical Latent Factors for Time Series
Anomaly Detection [40.21502451136054]
This work presents DGHL, a new family of generative models for time series anomaly detection.
A top-down Convolution Network maps a novel hierarchical latent space to time series windows, exploiting temporal dynamics to encode information efficiently.
Our method outperformed current state-of-the-art models on four popular benchmark datasets.
arXiv Detail & Related papers (2022-02-15T17:19:44Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - NVAE-GAN Based Approach for Unsupervised Time Series Anomaly Detection [19.726089445453734]
Time series anomaly detection is a common but challenging task in many industries.
It is difficult to detect anomalies in time series with high accuracy, due to noisy data collected from real world.
We propose our anomaly detection model: Time series to Image VAE (T2IVAE)
arXiv Detail & Related papers (2021-01-08T08:35:15Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - RobustTAD: Robust Time Series Anomaly Detection via Decomposition and
Convolutional Neural Networks [37.16594704493679]
We propose RobustTAD, a Robust Time series Anomaly Detection framework.
It integrates robust seasonal-trend decomposition and convolutional neural network for time series data.
It is deployed as a public online service and widely adopted in different business scenarios at Alibaba Group.
arXiv Detail & Related papers (2020-02-21T20:43:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.