論文の概要: Chumor 1.0: A Truly Funny and Challenging Chinese Humor Understanding Dataset from Ruo Zhi Ba
- arxiv url: http://arxiv.org/abs/2406.12754v1
- Date: Tue, 18 Jun 2024 16:22:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 18:09:06.888382
- Title: Chumor 1.0: A Truly Funny and Challenging Chinese Humor Understanding Dataset from Ruo Zhi Ba
- Title(参考訳): Chumor 1.0:Ruo Zhi Baの中国風雲理解データセット
- Authors: Ruiqi He, Yushu He, Longju Bai, Jiarui Liu, Zhenjie Sun, Zenghao Tang, He Wang, Hanchen Xia, Naihao Deng,
- Abstract要約: われわれは、中国のRedditのようなプラットフォームであるRuo Zhi Ba(RZB)をベースとしたデータセットであるChumorを構築した。
ジョークごとの説明に注釈を付け,2つの最先端LCM, GPT-4o, ERNIE Botに対する人間の説明を評価する。
評価の結果,SOTA LLMにおいてもChumorは難易度が高く,人間によるChumorのジョークの説明はLLMによる説明よりもはるかに優れていることがわかった。
- 参考スコア(独自算出の注目度): 7.878358092927338
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Existing humor datasets and evaluations predominantly focus on English, lacking resources for culturally nuanced humor in non-English languages like Chinese. To address this gap, we construct Chumor, a dataset sourced from Ruo Zhi Ba (RZB), a Chinese Reddit-like platform dedicated to sharing intellectually challenging and culturally specific jokes. We annotate explanations for each joke and evaluate human explanations against two state-of-the-art LLMs, GPT-4o and ERNIE Bot, through A/B testing by native Chinese speakers. Our evaluation shows that Chumor is challenging even for SOTA LLMs, and the human explanations for Chumor jokes are significantly better than explanations generated by the LLMs.
- Abstract(参考訳): 既存のユーモアデータセットと評価は主に英語に焦点を当てており、中国語のような非英語の言語では文化的にニュアンスのあるユーモアの資源が不足している。
このギャップに対処するため、中国のRedditのようなプラットフォームであるRuo Zhi Ba(RZB)をベースとしたデータセットであるChumorを構築した。
我々は,中国語話者によるA/Bテストを通じて,各ジョークの解説を行い,最先端のLLMである GPT-4o と ERNIE Bot に対する人間の説明を評価する。
評価の結果,SOTA LLMにおいてもChumorは難易度が高く,人間によるChumorのジョークの説明はLLMによる説明よりもはるかに優れていることがわかった。
関連論文リスト
- Can Pre-trained Language Models Understand Chinese Humor? [74.96509580592004]
本論文は,事前学習言語モデル(PLM)のユーモア理解能力を体系的に研究する最初の論文である。
提案した評価フレームワークのすべてのデータ要件を完全に満たす中国の総合的ユーモアデータセットを構築した。
中国のユーモアデータセットに関する実証的研究は、ユーモア理解と生成におけるPLMの将来の最適化に非常に役立つ貴重な観察結果をもたらす。
論文 参考訳(メタデータ) (2024-07-04T18:13:38Z) - Getting Serious about Humor: Crafting Humor Datasets with Unfunny Large Language Models [27.936545041302377]
大規模言語モデル(LLM)は、テキストを編集することでユーモア検出のための合成データを生成することができる。
我々は、既存の人間のデータセット上でLLMをベンチマークし、現在のLLMは、ジョークを「不快に」する印象的な能力を示すことを示す。
我々は、GPT-4の合成データがバイリンガルアノテータによって高度に評価されているという、コード混成のイングリッシュ・ヒンディー語ユーモアデータセットにアプローチを拡張した。
論文 参考訳(メタデータ) (2024-02-23T02:58:12Z) - ChatGPT is fun, but it is not funny! Humor is still challenging Large
Language Models [19.399535453449488]
OpenAIのChatGPTモデルは、ほとんど人間レベルでコミュニケーションを取り、ジョークを言うことができます。
ジョーク、すなわち生成、説明、検出に関する一連の探索実験において、ChatGPTの人間のユーモアを把握、再現する能力を理解しようと試みる。
私たちの経験的証拠は、ジョークはハードコードではなく、主にモデルによって新たに生成されたものではないことを示している。
論文 参考訳(メタデータ) (2023-06-07T16:10:21Z) - The Naughtyformer: A Transformer Understands Offensive Humor [63.05016513788047]
Redditから抽出された新しいジョークデータセットを導入し、Naughtyformerと呼ばれる微調整されたトランスフォーマーを用いてサブタイプ分類タスクを解決する。
本モデルでは, ジョークの攻撃性の検出が, 最先端の手法と比較して有意に優れていることを示す。
論文 参考訳(メタデータ) (2022-11-25T20:37:58Z) - ExPUNations: Augmenting Puns with Keywords and Explanations [88.58174386894913]
我々は、キーワードの詳細なクラウドソースアノテーションで既存の句のデータセットを拡張する。
これは、パント専用の広範囲できめ細かなアノテーションを備えた最初のユーモアデータセットである。
句分類支援のための説明生成とキーワード条件付き句生成という2つのタスクを提案する。
論文 参考訳(メタデータ) (2022-10-24T18:12:02Z) - Towards Multimodal Prediction of Spontaneous Humour: A Novel Dataset and First Results [84.37263300062597]
風は人間の社会的行動、感情、認知の重要な要素である。
現在のユーモア検出法は、ステージ化されたデータのみに基づいており、「現実世界」の応用には不十分である。
約11時間の記録を含むPassau-Spontaneous Football Coach Humorデータセットを導入することで,この障害への対処に寄与する。
論文 参考訳(メタデータ) (2022-09-28T17:36:47Z) - Do Androids Laugh at Electric Sheep? Humor "Understanding" Benchmarks
from The New Yorker Caption Contest [70.40189243067857]
大きめのニューラルネットワークがジョークを生成できるようになったが、本当にユーモアを「理解」しているのだろうか?
私たちは、New Yorker Cartoon Caption Contestから派生した3つのタスクでAIモデルに挑戦します。
どちらのモデルも3つのタスクすべてで苦労しています。
論文 参考訳(メタデータ) (2022-09-13T20:54:00Z) - M2H2: A Multimodal Multiparty Hindi Dataset For Humor Recognition in
Conversations [72.81164101048181]
テレビシリーズ『Shrimaan Shrimati Phir Se』の13話から6,191発の発声を含む会話におけるマルチモーダル・マルチパーティ・ヒンディー・ヒューム(M2H2)認識のためのデータセットを提案する。
それぞれの発話はユーモア/非感情ラベルでアノテートされ、音響、視覚、テキストのモダリティを含む。
M2H2データセットにおける実験結果から,マルチモーダル情報はユーモア認識のための単調な情報を補完することが示された。
論文 参考訳(メタデータ) (2021-08-03T02:54:09Z) - DeHumor: Visual Analytics for Decomposing Humor [36.300283476950796]
公言におけるユーモラスな行動を分析する視覚システムであるDeHumorを開発した。
それぞれの具体例の構成要素を直感的に明らかにするために、DeHumorはユーモラスな動画をマルチモーダルな特徴に分解する。
DeHumorはユーモアのユーモアの例として、さまざまなビルディングブロックをハイライトすることができる。
論文 参考訳(メタデータ) (2021-07-18T04:01:07Z) - Uncertainty and Surprisal Jointly Deliver the Punchline: Exploiting
Incongruity-Based Features for Humor Recognition [0.6445605125467573]
ジョークを2つの異なるコンポーネントに分割します。セットアップとパンチラインです。
ユーモアの不整合理論に触発され、セマンティック不確実性を生み出す部分としてセットをモデル化する。
ますます強力な言語モデルによって、私たちはGPT-2言語モデルにパンチラインとともにセットアップをフィードすることができた。
論文 参考訳(メタデータ) (2020-12-22T13:48:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。