Neural Approximate Mirror Maps for Constrained Diffusion Models
- URL: http://arxiv.org/abs/2406.12816v1
- Date: Tue, 18 Jun 2024 17:36:09 GMT
- Title: Neural Approximate Mirror Maps for Constrained Diffusion Models
- Authors: Berthy T. Feng, Ricardo Baptista, Katherine L. Bouman,
- Abstract summary: Diffusion models excel at creating visually-convincing images, but they often struggle to meet subtle constraints inherent in the training data.
We propose neural approximate mirror maps (NAMMs) for general constraints.
A generative model, such as an MDM, can then be trained in the learned mirror space and its samples restored to the constraint set by the inverse map.
- Score: 6.776705170481944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models excel at creating visually-convincing images, but they often struggle to meet subtle constraints inherent in the training data. Such constraints could be physics-based (e.g., satisfying a PDE), geometric (e.g., respecting symmetry), or semantic (e.g., including a particular number of objects). When the training data all satisfy a certain constraint, enforcing this constraint on a diffusion model not only improves its distribution-matching accuracy but also makes it more reliable for generating valid synthetic data and solving constrained inverse problems. However, existing methods for constrained diffusion models are inflexible with different types of constraints. Recent work proposed to learn mirror diffusion models (MDMs) in an unconstrained space defined by a mirror map and to impose the constraint with an inverse mirror map, but analytical mirror maps are challenging to derive for complex constraints. We propose neural approximate mirror maps (NAMMs) for general constraints. Our approach only requires a differentiable distance function from the constraint set. We learn an approximate mirror map that pushes data into an unconstrained space and a corresponding approximate inverse that maps data back to the constraint set. A generative model, such as an MDM, can then be trained in the learned mirror space and its samples restored to the constraint set by the inverse map. We validate our approach on a variety of constraints, showing that compared to an unconstrained diffusion model, a NAMM-based MDM substantially improves constraint satisfaction. We also demonstrate how existing diffusion-based inverse-problem solvers can be easily applied in the learned mirror space to solve constrained inverse problems.
Related papers
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
This paper studies amortized sampling of the posterior over data, $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$, in a model that consists of a diffusion generative model prior $p(mathbfx)$ and a black-box constraint or function $r(mathbfx)$.
We prove the correctness of a data-free learning objective, relative trajectory balance, for training a diffusion model that samples from
arXiv Detail & Related papers (2024-05-31T16:18:46Z) - Mirror Diffusion Models for Constrained and Watermarked Generation [41.27274841596343]
Mirror Diffusion Models (MDM) is a new class of diffusion models that generate data on convex constrained sets without losing tractability.
For safety and privacy purposes, we also explore constrained sets as a new mechanism to embed invisible but quantitative information in generated data.
Our work brings new algorithmic opportunities for learning tractable diffusion on complex domains.
arXiv Detail & Related papers (2023-10-02T14:26:31Z) - On Error Propagation of Diffusion Models [77.91480554418048]
We develop a theoretical framework to mathematically formulate error propagation in the architecture of DMs.
We apply the cumulative error as a regularization term to reduce error propagation.
Our proposed regularization reduces error propagation, significantly improves vanilla DMs, and outperforms previous baselines.
arXiv Detail & Related papers (2023-08-09T15:31:17Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
We propose a novel and efficient diffusion sampling strategy that synergistically combines the diffusion sampling and Krylov subspace methods.
Specifically, we prove that if tangent space at a denoised sample by Tweedie's formula forms a Krylov subspace, then the CG with the denoised data ensures the data consistency update to remain in the tangent space.
Our proposed method achieves more than 80 times faster inference time than the previous state-of-the-art method.
arXiv Detail & Related papers (2023-03-10T07:42:49Z) - Information-Theoretic Diffusion [18.356162596599436]
Denoising diffusion models have spurred significant gains in density modeling and image generation.
We introduce a new mathematical foundation for diffusion models inspired by classic results in information theory.
arXiv Detail & Related papers (2023-02-07T23:03:07Z) - Improving Diffusion Models for Inverse Problems using Manifold Constraints [55.91148172752894]
We show that current solvers throw the sample path off the data manifold, and hence the error accumulates.
To address this, we propose an additional correction term inspired by the manifold constraint.
We show that our method is superior to the previous methods both theoretically and empirically.
arXiv Detail & Related papers (2022-06-02T09:06:10Z) - Solving inverse problems using conditional invertible neural networks [0.0]
We develop a model that maps the given observations to the unknown input field in the form of a surrogate model.
This inverse surrogate model will then allow us to estimate the unknown input field for any given sparse and noisy output observations.
arXiv Detail & Related papers (2020-07-31T05:08:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.