論文の概要: Can Go AIs be adversarially robust?
- arxiv url: http://arxiv.org/abs/2406.12843v2
- Date: Tue, 24 Sep 2024 08:38:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 01:22:29.852267
- Title: Can Go AIs be adversarially robust?
- Title(参考訳): Go AIは逆向きに堅牢か?
- Authors: Tom Tseng, Euan McLean, Kellin Pelrine, Tony T. Wang, Adam Gleave,
- Abstract要約: 自然対策を加えることで、Goの堅牢性が達成できるかどうかを考察する。
これらの防御策のいくつかは、以前発見された攻撃から守られているが、新しく訓練された敵には耐えられない。
我々の研究結果は、堅牢なAIシステムの構築は、非常に超人的なシステムであっても、最も難易度の高い設定で難しいことを示唆している。
- 参考スコア(独自算出の注目度): 4.466856575755327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prior work found that superhuman Go AIs can be defeated by simple adversarial strategies, especially "cyclic" attacks. In this paper, we study whether adding natural countermeasures can achieve robustness in Go, a favorable domain for robustness since it benefits from incredible average-case capability and a narrow, innately adversarial setting. We test three defenses: adversarial training on hand-constructed positions, iterated adversarial training, and changing the network architecture. We find that though some of these defenses protect against previously discovered attacks, none withstand freshly trained adversaries. Furthermore, most of the reliably effective attacks these adversaries discover are different realizations of the same overall class of cyclic attacks. Our results suggest that building robust AI systems is challenging even with extremely superhuman systems in some of the most tractable settings, and highlight two key gaps: efficient generalization in defenses, and diversity in training. For interactive examples of attacks and a link to our codebase, see https://goattack.far.ai.
- Abstract(参考訳): 以前の研究によると、超人的な囲碁AIは単純な敵戦略、特に「周期的な」攻撃によって倒される可能性がある。
本稿では, 自然対策の追加が, 極めて高い平均ケース能力と, 本質的には狭く, 対角的な設定の恩恵を受け, 強靭性に有利なドメインであるGoの堅牢性を実現することができるかどうかを考察する。
我々は,手作り位置における敵の訓練,反復的敵の訓練,ネットワークアーキテクチャの変更の3つの防御策を検証した。
これらの防御策のいくつかは、以前発見された攻撃から守られているが、新しく訓練された敵には耐えられない。
さらに、これらの敵が発見する確実な効果的な攻撃のほとんどは、同じサイクルアタックの全体クラスの異なる実現である。
以上の結果から,堅牢なAIシステムの構築は,極めて超人的なシステムでも極めて困難な状況にあることが示唆され,防衛の効率的な一般化とトレーニングにおける多様性という,2つの大きなギャップが浮き彫りにされている。
攻撃のインタラクティブな例とコードベースへのリンクについては、https://goattack.far.ai.com/ をご覧ください。
関連論文リスト
- A Novel Approach to Guard from Adversarial Attacks using Stable Diffusion [0.0]
我々の提案は、AI Guardianフレームワークに対する別のアプローチを提案する。
トレーニングプロセスに敵対的な例を含める代わりに、AIシステムをトレーニングせずに行うことを提案する。
これは、より広い範囲の攻撃に対して本質的に回復力のあるシステムを構築することを目的としています。
論文 参考訳(メタデータ) (2024-05-03T04:08:15Z) - Improving behavior based authentication against adversarial attack using XAI [3.340314613771868]
本稿では,eXplainable AI(XAI)をベースとした,このようなシナリオにおける敵攻撃に対する防御戦略を提案する。
本手法で訓練した特徴セレクタは,元の認証器の前のフィルタとして使用することができる。
我々は,XAIをベースとした防衛戦略が敵の攻撃に対して有効であり,他の防衛戦略よりも優れていることを実証する。
論文 参考訳(メタデータ) (2024-02-26T09:29:05Z) - Benchmarking and Analyzing Robust Point Cloud Recognition: Bag of Tricks
for Defending Adversarial Examples [25.029854308139853]
3Dポイントクラウド上の敵の例は、2Dイメージ上のものよりも防御が難しい。
本稿では、まず、総合的で厳密なクラウド対逆ロバスト性ベンチマークを確立する。
次に、これらのトリックの効果的な組み合わせを特定するために、広範囲かつ体系的な実験を行う。
我々は、様々な攻撃に対して平均83.45%の精度を達成する、より堅牢な防御フレームワークを構築した。
論文 参考訳(メタデータ) (2023-07-31T01:34:24Z) - The Best Defense is a Good Offense: Adversarial Augmentation against
Adversarial Attacks [91.56314751983133]
A5$は、手元の入力に対する攻撃が失敗することを保証するために防御的摂動を構築するためのフレームワークである。
我々は,地上の真理ラベルを無視するロバスト化ネットワークを用いて,実機での防御強化を効果的に示す。
また、A5$を適用して、確実に堅牢な物理オブジェクトを作成する方法も示します。
論文 参考訳(メタデータ) (2023-05-23T16:07:58Z) - On the Effectiveness of Adversarial Training against Backdoor Attacks [111.8963365326168]
バックドアモデルは、事前に定義されたトリガーパターンが存在する場合、常にターゲットクラスを予測する。
一般的には、敵の訓練はバックドア攻撃に対する防御であると信じられている。
本稿では,様々なバックドア攻撃に対して良好な堅牢性を提供するハイブリッド戦略を提案する。
論文 参考訳(メタデータ) (2022-02-22T02:24:46Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
ネットワーク分類器に対するブラックボックス攻撃について検討する。
我々は、アタッカー・ディフェンダーの固定点がそれ自体、複雑な位相遷移を持つ一般サムゲームであると主張する。
攻撃防御力学の研究には連続的な学習手法が必要であることを示す。
論文 参考訳(メタデータ) (2021-11-23T23:42:16Z) - Adversarial Attack and Defense in Deep Ranking [100.17641539999055]
本稿では,敵対的摂動によって選抜された候補者のランクを引き上げたり下げたりできる,ディープランキングシステムに対する2つの攻撃を提案する。
逆に、全ての攻撃に対するランキングモデルロバスト性を改善するために、反崩壊三重項防御法が提案されている。
MNIST, Fashion-MNIST, CUB200-2011, CARS196およびStanford Online Productsデータセットを用いて, 敵のランク付け攻撃と防御を評価した。
論文 参考訳(メタデータ) (2021-06-07T13:41:45Z) - Universal Adversarial Training with Class-Wise Perturbations [78.05383266222285]
敵の訓練は 敵の攻撃を防御するために 最も広く使われる方法です
この作業では、UAPがすべてのクラスを等しく攻撃しないことがわかります。
我々は,対人訓練におけるクラスワイドUAPの利用を提案することで,SOTA UATを改善した。
論文 参考訳(メタデータ) (2021-04-07T09:05:49Z) - TROJANZOO: Everything you ever wanted to know about neural backdoors
(but were afraid to ask) [28.785693760449604]
TROJANZOOは、ニューラルバックドア攻撃/防御を評価するための最初のオープンソースプラットフォームです。
12の代表的な攻撃、15の最先端の防御、6の攻撃パフォーマンスメトリクス、10の防衛ユーティリティメトリクス、および攻撃防御相互作用の分析のための豊富なツールがあります。
既存の攻撃/防御の体系的な調査を行い、多くの興味深い発見をもたらします。
論文 参考訳(メタデータ) (2020-12-16T22:37:27Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z) - Harnessing adversarial examples with a surprisingly simple defense [47.64219291655723]
敵の例に対抗して、非常に簡単な方法を紹介します。
基本的な考え方は、テスト時にReLU関数の傾きを上げることである。
MNISTとCIFAR-10データセットによる実験では、提案された防御の有効性が示されている。
論文 参考訳(メタデータ) (2020-04-26T03:09:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。