On the Interpretability of Deep Learning Based Models for Knowledge
Tracing
- URL: http://arxiv.org/abs/2101.11335v1
- Date: Wed, 27 Jan 2021 11:55:03 GMT
- Title: On the Interpretability of Deep Learning Based Models for Knowledge
Tracing
- Authors: Xinyi Ding and Eric C. Larson
- Abstract summary: Knowledge tracing allows Intelligent Tutoring Systems to infer which topics or skills a student has mastered.
Deep Learning based models like Deep Knowledge Tracing (DKT) and Dynamic Key-Value Memory Network (DKVMN) have achieved significant improvements.
However, these deep learning based models are not as interpretable as other models because the decision-making process learned by deep neural networks is not wholly understood.
- Score: 5.120837730908589
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge tracing allows Intelligent Tutoring Systems to infer which topics
or skills a student has mastered, thus adjusting curriculum accordingly. Deep
Learning based models like Deep Knowledge Tracing (DKT) and Dynamic Key-Value
Memory Network (DKVMN) have achieved significant improvements compared with
models like Bayesian Knowledge Tracing (BKT) and Performance Factors Analysis
(PFA). However, these deep learning based models are not as interpretable as
other models because the decision-making process learned by deep neural
networks is not wholly understood by the research community. In previous work,
we critically examined the DKT model, visualizing and analyzing the behaviors
of DKT in high dimensional space. In this work, we extend our original analyses
with a much larger dataset and add discussions about the memory states of the
DKVMN model. We discover that Deep Knowledge Tracing has some critical
pitfalls: 1) instead of tracking each skill through time, DKT is more likely to
learn an `ability' model; 2) the recurrent nature of DKT reinforces irrelevant
information that it uses during the tracking task; 3) an untrained recurrent
network can achieve similar results to a trained DKT model, supporting a
conclusion that recurrence relations are not properly learned and, instead,
improvements are simply a benefit of projection into a high dimensional, sparse
vector space. Based on these observations, we propose improvements and future
directions for conducting knowledge tracing research using deep neural network
models.
Related papers
- A Question-centric Multi-experts Contrastive Learning Framework for Improving the Accuracy and Interpretability of Deep Sequential Knowledge Tracing Models [26.294808618068146]
Knowledge tracing plays a crucial role in predicting students' future performance.
Deep neural networks (DNNs) have shown great potential in solving the KT problem.
However, there still exist some important challenges when applying deep learning techniques to model the KT process.
arXiv Detail & Related papers (2024-03-12T05:15:42Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - Deep Learning Models for Knowledge Tracing: Review and Empirical
Evaluation [2.423547527175807]
We review and evaluate a body of deep learning knowledge tracing (DLKT) models with openly available and widely-used data sets.
The evaluated DLKT models have been reimplemented for assessing and replicability of previously reported results.
arXiv Detail & Related papers (2021-12-30T14:19:27Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Deep Knowledge Tracing with Learning Curves [0.9088303226909278]
We propose a Convolution-Augmented Knowledge Tracing (CAKT) model in this paper.
The model employs three-dimensional convolutional neural networks to explicitly learn a student's recent experience on applying the same knowledge concept with that in the next question.
CAKT achieves the new state-of-the-art performance in predicting students' responses compared with existing models.
arXiv Detail & Related papers (2020-07-26T15:24:51Z) - Context-Aware Attentive Knowledge Tracing [21.397976659857793]
We propose attentive knowledge tracing, which couples flexible attention-based neural network models with a series of novel, interpretable model components.
AKT uses a novel monotonic attention mechanism that relates a learner's future responses to assessment questions to their past responses.
We show that AKT outperforms existing KT methods (by up to $6%$ in AUC in some cases) on predicting future learner responses.
arXiv Detail & Related papers (2020-07-24T02:45:43Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
We propose to adopt the post-hoc method to tackle the interpretability issue for deep learning based knowledge tracing (DLKT) models.
Specifically, we focus on applying the layer-wise relevance propagation (LRP) method to interpret RNN-based DLKT model.
Experiment results show the feasibility using the LRP method for interpreting the DLKT model's predictions.
arXiv Detail & Related papers (2020-05-13T04:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.