Advancing Histopathology-Based Breast Cancer Diagnosis: Insights into Multi-Modality and Explainability
- URL: http://arxiv.org/abs/2406.12897v1
- Date: Fri, 7 Jun 2024 19:23:22 GMT
- Title: Advancing Histopathology-Based Breast Cancer Diagnosis: Insights into Multi-Modality and Explainability
- Authors: Faseela Abdullakutty, Younes Akbari, Somaya Al-Maadeed, Ahmed Bouridane, Rifat Hamoudi,
- Abstract summary: Using multi-modal techniques, integrating both image and non-image data, marks a transformative advancement in breast cancer diagnosis.
This review utilizes multi-modal data and emphasizes explainability to enhance diagnostic accuracy, clinician confidence, and patient engagement.
- Score: 2.8145472964232137
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: It is imperative that breast cancer is detected precisely and timely to improve patient outcomes. Diagnostic methodologies have traditionally relied on unimodal approaches; however, medical data analytics is integrating diverse data sources beyond conventional imaging. Using multi-modal techniques, integrating both image and non-image data, marks a transformative advancement in breast cancer diagnosis. The purpose of this review is to explore the burgeoning field of multimodal techniques, particularly the fusion of histopathology images with non-image data. Further, Explainable AI (XAI) will be used to elucidate the decision-making processes of complex algorithms, emphasizing the necessity of explainability in diagnostic processes. This review utilizes multi-modal data and emphasizes explainability to enhance diagnostic accuracy, clinician confidence, and patient engagement, ultimately fostering more personalized treatment strategies for breast cancer, while also identifying research gaps in multi-modality and explainability, guiding future studies, and contributing to the strategic direction of the field.
Related papers
- Breast Cancer Diagnosis: A Comprehensive Exploration of Explainable Artificial Intelligence (XAI) Techniques [38.321248253111776]
Article explores the application of Explainable Artificial Intelligence (XAI) techniques in the detection and diagnosis of breast cancer.
Aims to highlight the potential of XAI in bridging the gap between complex AI models and practical healthcare applications.
arXiv Detail & Related papers (2024-06-01T18:50:03Z) - MMFusion: Multi-modality Diffusion Model for Lymph Node Metastasis Diagnosis in Esophageal Cancer [13.74067035373274]
We introduce a multi-modal heterogeneous graph-based conditional feature-guided diffusion model for lymph node metastasis diagnosis based on CT images.
We propose a masked relational representation learning strategy, aiming to uncover the latent prognostic correlations and priorities of primary tumor and lymph node image representations.
arXiv Detail & Related papers (2024-05-15T17:52:00Z) - Enhancing Breast Cancer Diagnosis in Mammography: Evaluation and Integration of Convolutional Neural Networks and Explainable AI [0.0]
The study presents an integrated framework combining Convolutional Neural Networks (CNNs) and Explainable Artificial Intelligence (XAI) for the enhanced diagnosis of breast cancer.
The methodology encompasses an elaborate data preprocessing pipeline and advanced data augmentation techniques to counteract dataset limitations.
A focal point of our study is the evaluation of XAI's effectiveness in interpreting model predictions.
arXiv Detail & Related papers (2024-04-05T05:00:21Z) - Post-Hoc Explainability of BI-RADS Descriptors in a Multi-task Framework
for Breast Cancer Detection and Segmentation [48.08423125835335]
MT-BI-RADS is a novel explainable deep learning approach for tumor detection in Breast Ultrasound (BUS) images.
It offers three levels of explanations to enable radiologists to comprehend the decision-making process in predicting tumor malignancy.
arXiv Detail & Related papers (2023-08-27T22:07:42Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Improved Multimodal Fusion for Small Datasets with Auxiliary Supervision [3.8750633583374143]
We propose three simple methods for improved multimodal fusion with small datasets.
The proposed methods are straightforward to implement and can be applied to any classification task with paired image and non-image data.
arXiv Detail & Related papers (2023-04-01T20:07:10Z) - Deep Multi-modal Fusion of Image and Non-image Data in Disease Diagnosis
and Prognosis: A Review [8.014632186417423]
The rapid development of diagnostic technologies in healthcare is leading to higher requirements for physicians to handle and integrate the heterogeneous, yet complementary data produced during routine practice.
With the recent advances in multi-modal deep learning technologies, an increasingly large number of efforts have been devoted to a key question: how do we extract and aggregate multi-modal information to ultimately provide more objective, quantitative computer-aided clinical decision making?
This review will include the (1) overview of current multi-modal learning, (2) summarization of multi-modal fusion methods, (3) discussion of the performance, (4) applications in disease diagnosis and prognosis, and (5) challenges and future
arXiv Detail & Related papers (2022-03-25T18:50:03Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z) - Act Like a Radiologist: Towards Reliable Multi-view Correspondence
Reasoning for Mammogram Mass Detection [49.14070210387509]
We propose an Anatomy-aware Graph convolutional Network (AGN) for mammogram mass detection.
AGN is tailored for mammogram mass detection and endows existing detection methods with multi-view reasoning ability.
Experiments on two standard benchmarks reveal that AGN significantly exceeds the state-of-the-art performance.
arXiv Detail & Related papers (2021-05-21T06:48:34Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.