Enhancing Breast Cancer Diagnosis in Mammography: Evaluation and Integration of Convolutional Neural Networks and Explainable AI
- URL: http://arxiv.org/abs/2404.03892v3
- Date: Sat, 27 Apr 2024 08:24:37 GMT
- Title: Enhancing Breast Cancer Diagnosis in Mammography: Evaluation and Integration of Convolutional Neural Networks and Explainable AI
- Authors: Maryam Ahmed, Tooba Bibi, Rizwan Ahmed Khan, Sidra Nasir,
- Abstract summary: The study presents an integrated framework combining Convolutional Neural Networks (CNNs) and Explainable Artificial Intelligence (XAI) for the enhanced diagnosis of breast cancer.
The methodology encompasses an elaborate data preprocessing pipeline and advanced data augmentation techniques to counteract dataset limitations.
A focal point of our study is the evaluation of XAI's effectiveness in interpreting model predictions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Deep learning (DL) models for diagnosing breast cancer from mammographic images often operate as "black boxes", making it difficult for healthcare professionals to trust and understand their decision-making processes. The study presents an integrated framework combining Convolutional Neural Networks (CNNs) and Explainable Artificial Intelligence (XAI) for the enhanced diagnosis of breast cancer using the CBIS-DDSM dataset. The methodology encompasses an elaborate data preprocessing pipeline and advanced data augmentation techniques to counteract dataset limitations and transfer learning using pre-trained networks such as VGG-16, Inception-V3 and ResNet was employed. A focal point of our study is the evaluation of XAI's effectiveness in interpreting model predictions, highlighted by utilizing the Hausdorff measure to assess the alignment between AI-generated explanations and expert annotations quantitatively. This approach is critical for XAI in promoting trustworthiness and ethical fairness in AI-assisted diagnostics. The findings from our research illustrate the effective collaboration between CNNs and XAI in advancing diagnostic methods for breast cancer, thereby facilitating a more seamless integration of advanced AI technologies within clinical settings. By enhancing the interpretability of AI driven decisions, this work lays the groundwork for improved collaboration between AI systems and medical practitioners, ultimately enriching patient care. Furthermore, the implications of our research extended well beyond the current methodologies. It encourages further research into how to combine multimodal data and improve AI explanations to meet the needs of clinical practice.
Related papers
- Advancing Histopathology-Based Breast Cancer Diagnosis: Insights into Multi-Modality and Explainability [2.8145472964232137]
Using multi-modal techniques, integrating both image and non-image data, marks a transformative advancement in breast cancer diagnosis.
This review utilizes multi-modal data and emphasizes explainability to enhance diagnostic accuracy, clinician confidence, and patient engagement.
arXiv Detail & Related papers (2024-06-07T19:23:22Z) - Breast Cancer Diagnosis: A Comprehensive Exploration of Explainable Artificial Intelligence (XAI) Techniques [38.321248253111776]
Article explores the application of Explainable Artificial Intelligence (XAI) techniques in the detection and diagnosis of breast cancer.
Aims to highlight the potential of XAI in bridging the gap between complex AI models and practical healthcare applications.
arXiv Detail & Related papers (2024-06-01T18:50:03Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - The Limits of Perception: Analyzing Inconsistencies in Saliency Maps in XAI [0.0]
Explainable artificial intelligence (XAI) plays an indispensable role in demystifying the decision-making processes of AI.
As they operate as "black boxes," with their reasoning obscured and inaccessible, there's an increased risk of misdiagnosis.
This shift towards transparency is not just beneficial -- it's a critical step towards responsible AI integration in healthcare.
arXiv Detail & Related papers (2024-03-23T02:15:23Z) - An Explainable AI Framework for Artificial Intelligence of Medical
Things [2.7774194651211217]
We leverage a custom XAI framework, incorporating techniques such as Local Interpretable Model-Agnostic Explanations (LIME), SHapley Additive exPlanations (SHAP), and Gradient-weighted Class Activation Mapping (Grad-Cam)
The proposed framework enhances the effectiveness of strategic healthcare methods and aims to instill trust and promote understanding in AI-driven medical applications.
We apply the XAI framework to brain tumor detection as a use case demonstrating accurate and transparent diagnosis.
arXiv Detail & Related papers (2024-03-07T01:08:41Z) - Enabling Collaborative Clinical Diagnosis of Infectious Keratitis by
Integrating Expert Knowledge and Interpretable Data-driven Intelligence [28.144658552047975]
This study investigates the performance, interpretability, and clinical utility of knowledge-guided diagnosis model (KGDM) in the diagnosis of infectious keratitis (IK)
The diagnostic odds ratios (DOR) of the interpreted AI-based biomarkers are effective, ranging from 3.011 to 35.233.
The participants with collaboration achieved a performance exceeding that of both humans and AI.
arXiv Detail & Related papers (2024-01-14T02:10:54Z) - Polar-Net: A Clinical-Friendly Model for Alzheimer's Disease Detection
in OCTA Images [53.235117594102675]
Optical Coherence Tomography Angiography is a promising tool for detecting Alzheimer's disease (AD) by imaging the retinal microvasculature.
We propose a novel deep-learning framework called Polar-Net to provide interpretable results and leverage clinical prior knowledge.
We show that Polar-Net outperforms existing state-of-the-art methods and provides more valuable pathological evidence for the association between retinal vascular changes and AD.
arXiv Detail & Related papers (2023-11-10T11:49:49Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
We launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the AI model can be distributedly trained and independently executed at each host institution.
Our study is based on 9,573 chest computed tomography scans (CTs) from 3,336 patients collected from 23 hospitals located in China and the UK.
arXiv Detail & Related papers (2021-11-18T00:43:41Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.