Evaluating the Generalization Ability of Quantized LLMs: Benchmark, Analysis, and Toolbox
- URL: http://arxiv.org/abs/2406.12928v1
- Date: Sat, 15 Jun 2024 12:02:14 GMT
- Title: Evaluating the Generalization Ability of Quantized LLMs: Benchmark, Analysis, and Toolbox
- Authors: Yijun Liu, Yuan Meng, Fang Wu, Shenhao Peng, Hang Yao, Chaoyu Guan, Chen Tang, Xinzhu Ma, Zhi Wang, Wenwu Zhu,
- Abstract summary: Large language models (LLMs) have exhibited exciting progress in multiple scenarios.
As an effective means to reduce memory footprint and inference cost, quantization also faces challenges in performance degradation at low bit-widths.
This work provides a comprehensive benchmark suite for this research topic, including an evaluation system, detailed analyses, and a general toolbox.
- Score: 46.39670209441478
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have exhibited exciting progress in multiple scenarios, while the huge computational demands hinder their deployments in lots of real-world applications. As an effective means to reduce memory footprint and inference cost, quantization also faces challenges in performance degradation at low bit-widths. Understanding the impact of quantization on LLM capabilities, especially the generalization ability, is crucial. However, the community's main focus remains on the algorithms and models of quantization, with insufficient attention given to whether the quantized models can retain the strong generalization abilities of LLMs. In this work, we fill this gap by providing a comprehensive benchmark suite for this research topic, including an evaluation system, detailed analyses, and a general toolbox. Specifically, based on the dominant pipeline in LLM quantization, we primarily explore the impact of calibration data distribution on the generalization of quantized LLMs and conduct the benchmark using more than 40 datasets within two main scenarios. Based on this benchmark, we conduct extensive experiments with two well-known LLMs (English and Chinese) and four quantization algorithms to investigate this topic in-depth, yielding several counter-intuitive and valuable findings, e.g., models quantized using a calibration set with the same distribution as the test data are not necessarily optimal. Besides, to facilitate future research, we also release a modular-designed toolbox, which decouples the overall pipeline into several separate components, e.g., base LLM module, dataset module, quantizer module, etc. and allows subsequent researchers to easily assemble their methods through a simple configuration. Our benchmark suite is publicly available at https://github.com/TsingmaoAI/MI-optimize
Related papers
- A Comprehensive Study on Quantization Techniques for Large Language Models [0.0]
Large Language Models (LLMs) have been extensively researched and used in both academia and industry.
LLMs present significant challenges for deployment on resource-constrained IoT devices and embedded systems.
Quantization, a technique that reduces the precision of model values to a smaller set of discrete values, offers a promising solution.
arXiv Detail & Related papers (2024-10-30T04:55:26Z) - SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models [67.67135738642547]
Post-training quantization (PTQ) is a powerful compression technique investigated in large language models (LLMs)
Existing PTQ methods are not ideal in terms of accuracy and efficiency, especially with below 4 bit-widths.
This paper presents a Salience-Driven Mixed-Precision Quantization scheme for LLMs, namely SliM-LLM.
arXiv Detail & Related papers (2024-05-23T16:21:48Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
Quantization, a key compression technique, can effectively mitigate these demands by compressing and accelerating large language models.
We present LLMC, a plug-and-play compression toolkit, to fairly and systematically explore the impact of quantization.
Powered by this versatile toolkit, our benchmark covers three key aspects: calibration data, algorithms (three strategies), and data formats.
arXiv Detail & Related papers (2024-05-09T11:49:05Z) - EasyQuant: An Efficient Data-free Quantization Algorithm for LLMs [10.385919320080017]
We propose EasyQuant, a training-free and data-independent weight-only quantization algorithm for large language models.
We find that EasyQuant achieves comparable performance to the original model.
Our algorithm runs over 10 times faster than the data-dependent methods.
arXiv Detail & Related papers (2024-03-05T08:45:30Z) - A Comprehensive Evaluation of Quantization Strategies for Large Language Models [42.03804933928227]
Increasing the number of parameters in large language models (LLMs) usually improves performance in downstream tasks but raises compute and memory costs.
Quantization techniques, which reduce the bits needed for model weights or activations with minimal performance loss, have become popular.
We propose a structured evaluation framework consisting of three critical dimensions: knowledge & capacity, (2) alignment, and (3) efficiency.
arXiv Detail & Related papers (2024-02-26T17:45:36Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z) - Do Emergent Abilities Exist in Quantized Large Language Models: An
Empirical Study [90.34226812493083]
This work aims to investigate the impact of quantization on emphemergent abilities, which are important characteristics that distinguish LLMs from small language models.
Our empirical experiments show that these emergent abilities still exist in 4-bit quantization models, while 2-bit models encounter severe performance degradation.
To improve the performance of low-bit models, we conduct two special experiments: (1) fine-gained impact analysis that studies which components (or substructures) are more sensitive to quantization, and (2) performance compensation through model fine-tuning.
arXiv Detail & Related papers (2023-07-16T15:11:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.