A Comprehensive Evaluation of Quantization Strategies for Large Language Models
- URL: http://arxiv.org/abs/2402.16775v2
- Date: Thu, 6 Jun 2024 13:38:26 GMT
- Title: A Comprehensive Evaluation of Quantization Strategies for Large Language Models
- Authors: Renren Jin, Jiangcun Du, Wuwei Huang, Wei Liu, Jian Luan, Bin Wang, Deyi Xiong,
- Abstract summary: Increasing the number of parameters in large language models (LLMs) usually improves performance in downstream tasks but raises compute and memory costs.
Quantization techniques, which reduce the bits needed for model weights or activations with minimal performance loss, have become popular.
We propose a structured evaluation framework consisting of three critical dimensions: knowledge & capacity, (2) alignment, and (3) efficiency.
- Score: 42.03804933928227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Increasing the number of parameters in large language models (LLMs) usually improves performance in downstream tasks but raises compute and memory costs, making deployment difficult in resource-limited settings. Quantization techniques, which reduce the bits needed for model weights or activations with minimal performance loss, have become popular due to the rise of LLMs. However, most quantization studies use pre-trained LLMs, and the impact of quantization on instruction-tuned LLMs and the relationship between perplexity and benchmark performance of quantized LLMs are not well understood. Evaluation of quantized LLMs is often limited to language modeling and a few classification tasks, leaving their performance on other benchmarks unclear. To address these gaps, we propose a structured evaluation framework consisting of three critical dimensions: (1) knowledge \& capacity, (2) alignment, and (3) efficiency, and conduct extensive experiments across ten diverse benchmarks. Our experimental results indicate that LLMs with 4-bit quantization can retain performance comparable to their non-quantized counterparts, and perplexity can serve as a proxy metric for quantized LLMs on most benchmarks. Furthermore, quantized LLMs with larger parameter scales can outperform smaller LLMs. Despite the memory savings achieved through quantization, it can also slow down the inference speed of LLMs. Consequently, substantial engineering efforts and hardware support are imperative to achieve a balanced optimization of decoding speed and memory consumption in the context of quantized LLMs.
Related papers
- A Comprehensive Evaluation of Quantized Instruction-Tuned Large Language Models: An Experimental Analysis up to 405B [11.832907585157638]
This paper evaluates the performance of instruction-tuned LLMs on models ranging from 7B to 405B.
We assess performance across six task types: commonsense Q&A, knowledge and language understanding, instruction following, hallucination detection, mathematics, and dialogue.
arXiv Detail & Related papers (2024-09-17T10:31:37Z) - Performance Law of Large Language Models [58.32539851241063]
Performance law can be used to guide the choice of LLM architecture and the effective allocation of computational resources.
Performance law can be used to guide the choice of LLM architecture and the effective allocation of computational resources without extensive experiments.
arXiv Detail & Related papers (2024-08-19T11:09:12Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - Evaluating the Generalization Ability of Quantized LLMs: Benchmark, Analysis, and Toolbox [46.39670209441478]
Large language models (LLMs) have exhibited exciting progress in multiple scenarios.
As an effective means to reduce memory footprint and inference cost, quantization also faces challenges in performance degradation at low bit-widths.
This work provides a comprehensive benchmark suite for this research topic, including an evaluation system, detailed analyses, and a general toolbox.
arXiv Detail & Related papers (2024-06-15T12:02:14Z) - SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models [67.67135738642547]
Post-training quantization (PTQ) is a powerful compression technique investigated in large language models (LLMs)
Existing PTQ methods are not ideal in terms of accuracy and efficiency, especially with below 4 bit-widths.
This paper presents a Salience-Driven Mixed-Precision Quantization scheme for LLMs, namely SliM-LLM.
arXiv Detail & Related papers (2024-05-23T16:21:48Z) - An Empirical Study of LLaMA3 Quantization: From LLMs to MLLMs [54.91212829143966]
This study explores LLaMA3's capabilities when quantized to low bit-width.
We evaluate 10 existing post-training quantization and LoRA-finetuning methods of LLaMA3 on 1-8 bits and diverse datasets.
Our experimental results indicate that LLaMA3 still suffers non-negligent degradation in linguistic and visual contexts.
arXiv Detail & Related papers (2024-04-22T10:03:03Z) - Any-Precision LLM: Low-Cost Deployment of Multiple, Different-Sized LLMs [3.450141240227484]
We propose a lightweight method for any-precision quantization of Large Language Models (LLMs)
Our solution significantly reduces the high costs of deploying multiple, different-sized LLMs.
All the supported LLMs with varying bit-widths demonstrate state-of-the-art model quality and inference throughput.
arXiv Detail & Related papers (2024-02-16T09:06:06Z) - Do Emergent Abilities Exist in Quantized Large Language Models: An
Empirical Study [90.34226812493083]
This work aims to investigate the impact of quantization on emphemergent abilities, which are important characteristics that distinguish LLMs from small language models.
Our empirical experiments show that these emergent abilities still exist in 4-bit quantization models, while 2-bit models encounter severe performance degradation.
To improve the performance of low-bit models, we conduct two special experiments: (1) fine-gained impact analysis that studies which components (or substructures) are more sensitive to quantization, and (2) performance compensation through model fine-tuning.
arXiv Detail & Related papers (2023-07-16T15:11:01Z) - Memory-Efficient Fine-Tuning of Compressed Large Language Models via
sub-4-bit Integer Quantization [27.79783067245817]
Large language models (LLMs) face the challenges in fine-tuning and deployment due to their high memory demands and computational costs.
This paper presents Efficient Adaptation and Quantization-aware (PEQA) - a simple yet effective method that combines the advantages of PEFT with quantized LLMs.
arXiv Detail & Related papers (2023-05-23T15:20:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.