論文の概要: Self-Train Before You Transcribe
- arxiv url: http://arxiv.org/abs/2406.12937v1
- Date: Mon, 17 Jun 2024 09:21:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 00:37:55.217467
- Title: Self-Train Before You Transcribe
- Title(参考訳): 登録する前にセルフトレインする
- Authors: Robert Flynn, Anton Ragni,
- Abstract要約: 本研究では,テスト時間適応手法として,テストセットの録音にうるさわしい教師の訓練を行うことの利点について検討する。
ドメイン内のデータセットとドメイン外のデータセットは、32.2%までの大きな相対的なゲインを示す実験に使用される。
- 参考スコア(独自算出の注目度): 3.17829719401032
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When there is a mismatch between the training and test domains, current speech recognition systems show significant performance degradation. Self-training methods, such as noisy student teacher training, can help address this and enable the adaptation of models under such domain shifts. However, self-training typically requires a collection of unlabelled target domain data. For settings where this is not practical, we investigate the benefit of performing noisy student teacher training on recordings in the test set as a test-time adaptation approach. Similarly to the dynamic evaluation approach in language modelling, this enables the transfer of information across utterance boundaries and functions as a method of domain adaptation. A range of in-domain and out-of-domain datasets are used for experiments demonstrating large relative gains of up to 32.2%. Interestingly, our method showed larger gains than the typical self-training setup that utilises separate adaptation data.
- Abstract(参考訳): トレーニング領域とテスト領域の間にミスマッチがある場合、現在の音声認識システムは、大幅な性能劣化を示す。
ノイズの多い教員養成のような自己学習手法は、この問題に対処し、そのようなドメインシフトの下でモデルの適応を可能にする。
しかし、セルフトレーニングは通常、非ラップのターゲットドメインデータの収集を必要とする。
実践的でない環境では,テスト時間適応手法として,テストセットにおける録音におけるノイズの多い学生教師の訓練を行う利点について検討する。
言語モデリングにおける動的評価手法と同様に、ドメイン適応の手法として、発話境界と関数間の情報の伝達を可能にする。
ドメイン内のデータセットとドメイン外のデータセットは、32.2%までの大きな相対的なゲインを示す実験に使用される。
興味深いことに,本手法は,個別適応データを利用した通常の自己学習装置よりも大きな利得を示した。
関連論文リスト
- Unsupervised Domain Adaptation for Semantic Segmentation with Pseudo
Label Self-Refinement [9.69089112870202]
擬似ラベルのオンライン精錬のための補助的擬似ラベル精錬ネットワーク(PRN)を提案する。
3つの異なるドメインシフトを持つベンチマークデータセットに対する我々のアプローチを評価する。
論文 参考訳(メタデータ) (2023-10-25T20:31:07Z) - Multi-source Domain Adaptation for Text-independent Forensic Speaker
Recognition [36.83842373791537]
話者認識システムを新しい環境に適応させることは、良好な性能モデルを改善するために広く使われている手法である。
従来の研究では、複数の音響領域からトレーニングデータを収集するより実践的なシナリオを無視した単一ドメイン適応に焦点が当てられていた。
複数の音響領域にまたがる適応性能を高めるために,3つの新しい適応手法を提案する。
論文 参考訳(メタデータ) (2022-11-17T22:11:25Z) - RAIS: Robust and Accurate Interactive Segmentation via Continual
Learning [16.382862088005087]
本稿では,対話型セグメンテーションと継続的学習のための堅牢で正確なアーキテクチャであるRAISを提案する。
テストセットを効率的に学習するために,グローバルパラメータとローカルパラメータを更新するための新しい最適化手法を提案する。
また,リモートセンシングと医用画像のデータセットにおけるロバスト性も示す。
論文 参考訳(メタデータ) (2022-10-20T03:05:44Z) - One-Class Knowledge Distillation for Face Presentation Attack Detection [53.30584138746973]
本稿では,一級ドメイン適応による対面PADのクロスドメイン性能向上のための教師学生フレームワークを提案する。
学生ネットワークは、教師ネットワークを模倣し、ターゲットドメインの真の顔サンプルの類似した表現を学ぶために訓練される。
テストフェーズでは、教師と学生ネットワークの表現の類似度スコアを用いて、真の攻撃と区別する。
論文 参考訳(メタデータ) (2022-05-08T06:20:59Z) - VisDA-2021 Competition Universal Domain Adaptation to Improve
Performance on Out-of-Distribution Data [64.91713686654805]
Visual Domain Adaptation (VisDA) 2021コンペティションは、新しいテストディストリビューションに適応するモデルの能力をテストする。
我々は,新しい視点,背景,モダリティ,品質劣化への適応性を評価する。
厳密なプロトコルを使用してパフォーマンスを計測し、最先端のドメイン適応手法と比較する。
論文 参考訳(メタデータ) (2021-07-23T03:21:51Z) - Unsupervised Domain Adaptation for Speech Recognition via Uncertainty
Driven Self-Training [55.824641135682725]
WSJ をソースドメインとし,TED-Lium 3 とSWITCHBOARD を併用したドメイン適応実験を行った。
論文 参考訳(メタデータ) (2020-11-26T18:51:26Z) - Knowledge Distillation for BERT Unsupervised Domain Adaptation [2.969705152497174]
トレーニング済みの言語モデルであるBERTは、さまざまな自然言語処理タスクで大幅なパフォーマンス向上を実現している。
蒸留による逆順応法(AAD)を提案する。
ドメイン間感情分類におけるアプローチを30組のドメイン対で評価した。
論文 参考訳(メタデータ) (2020-10-22T06:51:24Z) - Unsupervised Domain Adaptation for Spatio-Temporal Action Localization [69.12982544509427]
S時間動作の局所化はコンピュータビジョンにおいて重要な問題である。
本稿では、エンドツーエンドの教師なしドメイン適応アルゴリズムを提案する。
空間的特徴と時間的特徴を別々にあるいは共同的に適応した場合に,顕著な性能向上が達成できることを示す。
論文 参考訳(メタデータ) (2020-10-19T04:25:10Z) - A Brief Review of Domain Adaptation [1.2043574473965317]
本稿では、ラベルがソースドメインでのみ利用可能となる、教師なしドメイン適応に焦点を当てる。
ドメイン適応問題に対処することを目的とした、浅層および深層ドメイン適応アプローチが成功している。
論文 参考訳(メタデータ) (2020-10-07T07:05:32Z) - Adaptive Risk Minimization: Learning to Adapt to Domain Shift [109.87561509436016]
ほとんどの機械学習アルゴリズムの基本的な前提は、トレーニングとテストデータは、同じ基礎となる分布から引き出されることである。
本研究では,学習データをドメインに構造化し,複数のテスト時間シフトが存在する場合の領域一般化の問題点について考察する。
本稿では、適応リスク最小化(ARM)の枠組みを紹介し、モデルがトレーニング領域に適応することを学ぶことで、効果的な適応のために直接最適化される。
論文 参考訳(メタデータ) (2020-07-06T17:59:30Z) - Don't Stop Pretraining: Adapt Language Models to Domains and Tasks [81.99843216550306]
バイオメディカルおよびコンピュータサイエンスの出版物、ニュース、レビュー)と8つの分類タスクについて調査する。
ドメイン内の事前トレーニング(ドメイン適応型事前トレーニング)の第2フェーズでは、パフォーマンスが向上する。
タスクの未ラベルデータ(タスク適応事前トレーニング)に適応することで、ドメイン適応事前トレーニング後のパフォーマンスが向上する。
論文 参考訳(メタデータ) (2020-04-23T04:21:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。