論文の概要: Pattern or Artifact? Interactively Exploring Embedding Quality with TRACE
- arxiv url: http://arxiv.org/abs/2406.12953v1
- Date: Tue, 18 Jun 2024 14:57:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 00:37:55.189631
- Title: Pattern or Artifact? Interactively Exploring Embedding Quality with TRACE
- Title(参考訳): パターンかアーティファクトか? TRACEを用いたインタラクティブな埋め込み品質探索
- Authors: Edith Heiter, Liesbet Martens, Ruth Seurinck, Martin Guilliams, Tijl De Bie, Yvan Saeys, Jefrey Lijffijt,
- Abstract要約: TRACEは次元還元技術によって生成された2次元埋め込みの質を分析するツールである。
インタラクティブなブラウザベースのインターフェースにより、ユーザは様々な埋め込みを探索し、ポイントワイドな埋め込み品質を視覚的に評価することができる。
- 参考スコア(独自算出の注目度): 10.103826383675646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents TRACE, a tool to analyze the quality of 2D embeddings generated through dimensionality reduction techniques. Dimensionality reduction methods often prioritize preserving either local neighborhoods or global distances, but insights from visual structures can be misleading if the objective has not been achieved uniformly. TRACE addresses this challenge by providing a scalable and extensible pipeline for computing both local and global quality measures. The interactive browser-based interface allows users to explore various embeddings while visually assessing the pointwise embedding quality. The interface also facilitates in-depth analysis by highlighting high-dimensional nearest neighbors for any group of points and displaying high-dimensional distances between points. TRACE enables analysts to make informed decisions regarding the most suitable dimensionality reduction method for their specific use case, by showing the degree and location where structure is preserved in the reduced space.
- Abstract(参考訳): 本稿では,次元還元技術を用いて生成した2次元埋め込みの質を解析するツールであるTRACEを提案する。
次元性低減手法は、しばしば局所的な地域や大域的な距離の保存を優先するが、その目的が均一に達成されていない場合、視覚構造からの洞察は誤解を招く可能性がある。
TRACEはこの課題に対処し、ローカルとグローバルの両方の品質測定を計算するためのスケーラブルで拡張可能なパイプラインを提供する。
インタラクティブなブラウザベースのインターフェースにより、ユーザは様々な埋め込みを探索し、ポイントワイドな埋め込み品質を視覚的に評価することができる。
インターフェースはまた、任意の点群に対して高次元近傍をハイライトし、点間の高次元距離を表示することで、詳細な解析を容易にする。
TRACEは,構造が縮小された空間に保存される度合いと位置を示すことによって,特定のユースケースに対して最も適切な次元的縮小法について,分析者が情報的決定を行うことを可能にする。
関連論文リスト
- CBMAP: Clustering-based manifold approximation and projection for dimensionality reduction [0.0]
データ次元を減少させるために次元性低減法が用いられる。
本研究は,次元削減のためのクラスタリングに基づくアプローチであるCBMAPを紹介する。
CBMAPは、大域的構造と局所的構造の両方を保存することを目的としており、低次元空間のクラスターが高次元空間のクラスタと密接に類似していることを保証する。
論文 参考訳(メタデータ) (2024-04-27T15:44:21Z) - ALSTER: A Local Spatio-Temporal Expert for Online 3D Semantic
Reconstruction [62.599588577671796]
本稿では,RGB-Dフレームのストリームから3次元セマンティックマップを段階的に再構成するオンライン3次元セマンティックセマンティックセマンティクス手法を提案する。
オフラインの手法とは異なり、ロボット工学や混合現実のようなリアルタイムな制約のあるシナリオに直接適用できます。
論文 参考訳(メタデータ) (2023-11-29T20:30:18Z) - X-PDNet: Accurate Joint Plane Instance Segmentation and Monocular Depth
Estimation with Cross-Task Distillation and Boundary Correction [9.215384107659665]
X-PDNetは平面インスタンス分割と深さ推定のマルチタスク学習のためのフレームワークである。
我々は、境界回帰損失を増大させるために、基底真理境界を用いることの現在の限界を強調した。
境界領域分割を支援するために深度情報を利用する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-09-15T14:27:54Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - ROIFormer: Semantic-Aware Region of Interest Transformer for Efficient
Self-Supervised Monocular Depth Estimation [6.923035780685481]
幾何認識表現強調のための効率的な局所適応アダプティブアテンション手法を提案する。
意味情報からの幾何学的手がかりを利用して局所適応的境界ボックスを学習し、教師なし特徴集合を導出する。
提案手法は, 自己教師型単分子深度推定タスクにおける新しい最先端技術を確立する。
論文 参考訳(メタデータ) (2022-12-12T06:38:35Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - ImpDet: Exploring Implicit Fields for 3D Object Detection [74.63774221984725]
我々は、境界ボックス回帰を暗黙の関数として見る新しい視点を導入する。
これは、Implicit DetectionまたはImpDetと呼ばれる提案されたフレームワークにつながります。
我々のImpDetは、異なる局所的な3次元空間の点に特定の値を割り当て、高品質な境界を生成することができる。
論文 参考訳(メタデータ) (2022-03-31T17:52:12Z) - Combining Local and Global Pose Estimation for Precise Tracking of
Similar Objects [2.861848675707602]
類似・非テクスチャオブジェクトに対する多目的6D検出・追跡パイプラインを提案する。
合成画像のみを訓練した新しいネットワークアーキテクチャは、複数のオブジェクトの同時ポーズ推定を可能にする。
建設現場における実際のAR支援アプリケーションにおいて,システムがどのように利用できるかを示す。
論文 参考訳(メタデータ) (2022-01-31T14:36:57Z) - UnProjection: Leveraging Inverse-Projections for Visual Analytics of
High-Dimensional Data [63.74032987144699]
提案するNNInvは,プロジェクションやマッピングの逆を近似する深層学習技術である。
NNInvは、2次元投影空間上の任意の点から高次元データを再構成することを学び、ユーザーは視覚分析システムで学習した高次元表現と対話することができる。
論文 参考訳(メタデータ) (2021-11-02T17:11:57Z) - Progressive Coordinate Transforms for Monocular 3D Object Detection [52.00071336733109]
本稿では,学習座標表現を容易にするために,PCT(Em Progressive Coordinate Transforms)と呼ばれる,新しい軽量なアプローチを提案する。
本稿では,学習座標表現を容易にするために,PCT(Em Progressive Coordinate Transforms)と呼ばれる,新しい軽量なアプローチを提案する。
論文 参考訳(メタデータ) (2021-08-12T15:22:33Z) - Oriented RepPoints for Aerial Object Detection [10.818838437018682]
本稿では,オブジェクト指向RepPointsという,空中物体検出のための新しい手法を提案する。
具体的には、任意指向オブジェクトの幾何学的および空間的情報を取得するために、適応点の集合を用いることを提案する。
教師付き学習を容易にするために,適応点を配向境界ボックスに明示的にマッピングする指向変換関数を提案する。
論文 参考訳(メタデータ) (2021-05-24T06:18:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。