Tensor networks for non-invertible symmetries in 3+1d and beyond
- URL: http://arxiv.org/abs/2406.12978v1
- Date: Tue, 18 Jun 2024 18:00:15 GMT
- Title: Tensor networks for non-invertible symmetries in 3+1d and beyond
- Authors: Pranay Gorantla, Shu-Heng Shao, Nathanan Tantivasadakarn,
- Abstract summary: We use ZX-diagrams to define a non-invertible operator implementing the Wegner duality in 3+1d lattice $mathbbZ$ gauge theory.
We further deform the $mathbbZ$ gauge theory while preserving the duality and find a model with nine exactly ground states on a torus.
- Score: 0.13654846342364307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tensor networks provide a natural language for non-invertible symmetries in general Hamiltonian lattice models. We use ZX-diagrams, which are tensor network presentations of quantum circuits, to define a non-invertible operator implementing the Wegner duality in 3+1d lattice $\mathbb{Z}_2$ gauge theory. The non-invertible algebra, which mixes with lattice translations, can be efficiently computed using ZX-calculus. We further deform the $\mathbb{Z}_2$ gauge theory while preserving the duality and find a model with nine exactly degenerate ground states on a torus, consistent with the Lieb-Schultz-Mattis-type constraint imposed by the symmetry. Finally, we provide a ZX-diagram presentation of the non-invertible duality operators (including non-invertible parity/reflection symmetries) of generalized Ising models based on graphs, encompassing the 1+1d Ising model, the three-spin Ising model, the Ashkin-Teller model, and the 2+1d plaquette Ising model. The mixing (or lack thereof) with spatial symmetries is understood from a unifying perspective based on graph theory.
Related papers
- Entanglement renormalization of fractonic anisotropic $\mathbb{Z}_N$ Laplacian models [4.68169911641046]
Gapped fracton phases constitute a new class of quantum states of matter which connects to topological orders but does not fit easily into existing paradigms.
We investigate the anisotropic $mathbbZ_N$ Laplacian model which can describe a family of fracton phases defined on arbitrary graphs.
arXiv Detail & Related papers (2024-09-26T18:36:23Z) - Realizing triality and $p$-ality by lattice twisted gauging in (1+1)d quantum spin systems [0.0]
We define the twisted Gauss law operator and implement the twisted gauging of the finite group on the lattice.
We show the twisted gauging is equivalent to the two-step procedure of first applying the SPT entangler and then untwisted gauging.
arXiv Detail & Related papers (2024-05-23T18:00:02Z) - Non-invertible and higher-form symmetries in 2+1d lattice gauge theories [0.0]
We explore exact generalized symmetries in the standard 2+1d lattice $mathbbZ$ gauge theory coupled to the Ising model.
One model has a (non-anomalous) non-invertible symmetry, and we identify two distinct non-invertible symmetry protected topological phases.
We discuss how the symmetries and anomalies in these two models are related by gauging, which is a 2+1d version of the Kennedy-Tasaki transformation.
arXiv Detail & Related papers (2024-05-21T18:00:00Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - Dualities in one-dimensional quantum lattice models: topological sectors [0.0]
We construct a general framework for relating the spectra of dual theories to each other.
We find that the mapping between its topological sectors and those of the XXZ model is associated with the non-trivial braided auto-equivalence of the Drinfel'd center.
arXiv Detail & Related papers (2022-11-07T18:54:57Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Boundary theories of critical matchgate tensor networks [59.433172590351234]
Key aspects of the AdS/CFT correspondence can be captured in terms of tensor network models on hyperbolic lattices.
For tensors fulfilling the matchgate constraint, these have previously been shown to produce disordered boundary states.
We show that these Hamiltonians exhibit multi-scale quasiperiodic symmetries captured by an analytical toy model.
arXiv Detail & Related papers (2021-10-06T18:00:03Z) - Tensor network simulation of the (1+1)-dimensional $O(3)$ nonlinear
$\sigma$-model with $\theta=\pi$ term [17.494746371461694]
We perform a tensor network simulation of the (1+1)-dimensional $O(3)$ nonlinear $sigma$-model with $theta=pi$ term.
Within the Hamiltonian formulation, this field theory emerges as the finite-temperature partition function of a modified quantum rotor model decorated with magnetic monopoles.
arXiv Detail & Related papers (2021-09-23T12:17:31Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.