Non-invertible and higher-form symmetries in 2+1d lattice gauge theories
- URL: http://arxiv.org/abs/2405.13105v1
- Date: Tue, 21 May 2024 18:00:00 GMT
- Title: Non-invertible and higher-form symmetries in 2+1d lattice gauge theories
- Authors: Yichul Choi, Yaman Sanghavi, Shu-Heng Shao, Yunqin Zheng,
- Abstract summary: We explore exact generalized symmetries in the standard 2+1d lattice $mathbbZ$ gauge theory coupled to the Ising model.
One model has a (non-anomalous) non-invertible symmetry, and we identify two distinct non-invertible symmetry protected topological phases.
We discuss how the symmetries and anomalies in these two models are related by gauging, which is a 2+1d version of the Kennedy-Tasaki transformation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore exact generalized symmetries in the standard 2+1d lattice $\mathbb{Z}_2$ gauge theory coupled to the Ising model, and compare them with their continuum field theory counterparts. One model has a (non-anomalous) non-invertible symmetry, and we identify two distinct non-invertible symmetry protected topological phases. The non-invertible algebra involves a lattice condensation operator, which creates a toric code ground state from a product state. Another model has a mixed anomaly between a 1-form symmetry and an ordinary symmetry. This anomaly enforces a nontrivial transition in the phase diagram, consistent with the "Higgs=SPT" proposal. Finally, we discuss how the symmetries and anomalies in these two models are related by gauging, which is a 2+1d version of the Kennedy-Tasaki transformation.
Related papers
- Exactly solvable models for fermionic symmetry-enriched topological phases and fermionic 't Hooft anomaly [33.49184078479579]
The interplay between symmetry and topological properties plays a very important role in modern physics.
How to realize all these fermionic SET (fSET) phases in lattice models remains to be a difficult open problem.
arXiv Detail & Related papers (2024-10-24T19:52:27Z) - Critical spin models from holographic disorder [49.1574468325115]
We study the behavior of XXZ spin chains with a quasiperiodic disorder not present in continuum holography.
Our results suggest the existence of a class of critical phases whose symmetries are derived from models of discrete holography.
arXiv Detail & Related papers (2024-09-25T18:00:02Z) - Gauging modulated symmetries: Kramers-Wannier dualities and non-invertible reflections [0.0]
Modulated symmetries are internal symmetries that act in a non-uniform, spatially modulated way.
In this paper, we systematically study the gauging of finite Abelian modulated symmetries in $1+1$ dimensions.
arXiv Detail & Related papers (2024-06-18T18:00:00Z) - Non-invertible SPT, gauging and symmetry fractionalization [2.541410020898643]
We construct the lattice models for the phases of all the symmetries in the Rep($Q_8$) duality web.
We show that these interplay can be explained using the symmetry fractionalization in the 2+1d bulk SET.
arXiv Detail & Related papers (2024-05-24T21:35:55Z) - Symmetry-restricted quantum circuits are still well-behaved [45.89137831674385]
We show that quantum circuits restricted by a symmetry inherit the properties of the whole special unitary group $SU(2n)$.
It extends prior work on symmetric states to the operators and shows that the operator space follows the same structure as the state space.
arXiv Detail & Related papers (2024-02-26T06:23:39Z) - Exotic Symmetry Breaking Properties of Self-Dual Fracton Spin Models [4.467896011825295]
We investigate the ground-state properties and phase transitions of two self-dual fracton spin models.
We show that both models experience a strong first-order phase transition with an anomalous $L-(D-1)$ scaling.
Our work provides new understanding of sub-dimensional symmetry breaking and makes an important step for studying quantum-error-correction properties of the checkerboard and Haah's codes.
arXiv Detail & Related papers (2023-11-18T13:12:14Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Duality viewpoint of criticality [10.697358928025304]
We study quantum many-body systems which are self-dual under duality transformation connecting different symmetry protected topological phases.
We provide a geometric explanation of the criticality of these self-dual models.
We illustrate our results with several examples in one and two dimensions, which separate two different SPTs.
arXiv Detail & Related papers (2022-09-27T15:13:27Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Fracton phases via exotic higher-form symmetry-breaking [0.0]
We study p-string condensation mechanisms for fracton phases from the viewpoint of higher-form symmetry.
We focus on the examples of the X-cube model and the rank-two symmetric-tensor U(1) scalar charge theory.
arXiv Detail & Related papers (2020-10-05T18:08:10Z) - Generalized string-nets for unitary fusion categories without
tetrahedral symmetry [77.34726150561087]
We present a general construction of the Levin-Wen model for arbitrary multiplicity-free unitary fusion categories.
We explicitly calculate the matrix elements of the Hamiltonian and, furthermore, show that it has the same properties as the original one.
arXiv Detail & Related papers (2020-04-15T12:21:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.