Simulating nonlinear optical processes on a superconducting quantum device
- URL: http://arxiv.org/abs/2406.13003v2
- Date: Mon, 26 Aug 2024 23:26:38 GMT
- Title: Simulating nonlinear optical processes on a superconducting quantum device
- Authors: Yuan Shi, Bram Evert, Amy F. Brown, Vinay Tripathi, Eyob A. Sete, Vasily Geyko, Yujin Cho, Jonathan L DuBois, Daniel Lidar, Ilon Joseph, Matt Reagor,
- Abstract summary: We develop a quantization approach to convert nonlinear wave-wave interaction problems to Hamiltonian simulation problems.
We demonstrate our approach using two qubits on a superconducting device.
This study provides an example of how plasma problems may be solved on near-term quantum computing platforms.
- Score: 0.9001959612747078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulating plasma physics on quantum computers is difficult because most problems of interest are nonlinear, but quantum computers are not naturally suitable for nonlinear operations. In weakly nonlinear regimes, plasma problems can be modeled as wave-wave interactions. In this paper, we develop a quantization approach to convert nonlinear wave-wave interaction problems to Hamiltonian simulation problems. We demonstrate our approach using two qubits on a superconducting device. Unlike a photonic device, a superconducting device does not naturally have the desired interactions in its native Hamiltonian. Nevertheless, Hamiltonian simulations can still be performed by decomposing required unitary operations into native gates. To improve experimental results, we employ a range of error mitigation techniques. Apart from readout error mitigation, we use randomized compilation to transform undiagnosed coherent errors into well-behaved stochastic Pauli channels. Moreover, to compensate for stochastic noise, we rescale exponentially decaying probability amplitudes using rates measured from cycle benchmarking. We carefully consider how different choices of product-formula algorithms affect the overall error and show how a trade-off can be made to best utilize limited quantum resources. This study provides an example of how plasma problems may be solved on near-term quantum computing platforms.
Related papers
- Efficient quantum simulation of nonlinear interactions using SNAP and
Rabi gates [0.7366405857677227]
We present a deterministic simulation technique that efficiently models nonlinear bosonic dynamics.
Our proposed simulation method facilitates high-fidelity modeling of phenomena that emerge from higher-order bosonic interactions.
arXiv Detail & Related papers (2023-12-15T16:44:43Z) - Complexity of Gaussian quantum optics with a limited number of
non-linearities [4.532517021515834]
We show that computing transition amplitudes of Gaussian processes with a single-layer of non-linearities is hard for classical computers.
We show how an efficient algorithm to solve this problem could be used to efficiently approximate outcome probabilities of a Gaussian boson sampling experiment.
arXiv Detail & Related papers (2023-10-09T18:00:04Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - Quantum Computing for Fusion Energy Science Applications [0.0]
We explore the topic of using quantum computers to simulate both linear and nonlinear dynamics in greater detail.
We extend previous results on embedding nonlinear systems within linear systems by explicitly deriving the connection between the Koopman evolution operator and the Perron-Frobenius evolution operator.
We discuss the simulation of toy models of wave-particle interactions through the simulation of quantum maps and of wave-wave interactions important in nonlinear plasma dynamics.
arXiv Detail & Related papers (2022-12-09T18:56:46Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
Finding ground states and low-lying excitations of a given Hamiltonian is one of the most important problems in many fields of physics.
quantum computing on Noisy Intermediate-Scale Quantum (NISQ) devices offers the prospect to efficiently perform such computations.
Current quantum devices still suffer from inherent quantum noise.
arXiv Detail & Related papers (2021-11-30T16:08:01Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.