Quantum Computing for Fusion Energy Science Applications
- URL: http://arxiv.org/abs/2212.05054v1
- Date: Fri, 9 Dec 2022 18:56:46 GMT
- Title: Quantum Computing for Fusion Energy Science Applications
- Authors: I. Joseph, Y. Shi, M. D. Porter, A. R. Castelli, V. I. Geyko, F. R.
Graziani, S. B. Libby, J. L. DuBois
- Abstract summary: We explore the topic of using quantum computers to simulate both linear and nonlinear dynamics in greater detail.
We extend previous results on embedding nonlinear systems within linear systems by explicitly deriving the connection between the Koopman evolution operator and the Perron-Frobenius evolution operator.
We discuss the simulation of toy models of wave-particle interactions through the simulation of quantum maps and of wave-wave interactions important in nonlinear plasma dynamics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This is a review of recent research exploring and extending present-day
quantum computing capabilities for fusion energy science applications. We begin
with a brief tutorial on both ideal and open quantum dynamics, universal
quantum computation, and quantum algorithms. Then, we explore the topic of
using quantum computers to simulate both linear and nonlinear dynamics in
greater detail. Because quantum computers can only efficiently perform linear
operations on the quantum state, it is challenging to perform nonlinear
operations that are generically required to describe the nonlinear differential
equations of interest. In this work, we extend previous results on embedding
nonlinear systems within linear systems by explicitly deriving the connection
between the Koopman evolution operator, the Perron-Frobenius evolution
operator, and the Koopman-von Neumann evolution (KvN) operator. We also
explicitly derive the connection between the Koopman and Carleman approaches to
embedding. Extension of the KvN framework to the complex-analytic setting
relevant to Carleman embedding, and the proof that different choices of complex
analytic reproducing kernel Hilbert spaces depend on the choice of Hilbert
space metric are covered in the appendices. Finally, we conclude with a review
of recent quantum hardware implementations of algorithms on present-day quantum
hardware platforms that may one day be accelerated through Hamiltonian
simulation. We discuss the simulation of toy models of wave-particle
interactions through the simulation of quantum maps and of wave-wave
interactions important in nonlinear plasma dynamics.
Related papers
- Simulating Schwinger model dynamics with quasi-one-dimensional qubit arrays [0.0]
We develop a strategy to run Schwinger model dynamics on synthetic quantum spin lattices.
We show that global magnetic field patterns can drive coherent quantum dynamics of the interface equivalent to the lattice Schwinger Hamiltonian.
This work opens up a path for near-term quantum simulators to address questions of immediate relevance to particle physics.
arXiv Detail & Related papers (2024-09-22T17:58:25Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Computing for nonlinear differential equations and turbulence [6.974741712647655]
We discuss progress in the development of both quantum algorithms for nonlinear equations and quantum hardware.
We propose pairings between quantum algorithms for nonlinear equations and quantum hardware concepts.
arXiv Detail & Related papers (2024-06-07T10:52:08Z) - Potential quantum advantage for simulation of fluid dynamics [1.4046104514367475]
We show that a potential quantum exponential speedup can be achieved to simulate the Navier-Stokes equations governing turbulence using quantum computing.
This work suggests that an exponential quantum advantage may exist for simulating nonlinear multiscale transport phenomena.
arXiv Detail & Related papers (2023-03-29T09:14:55Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Commutation simulator for open quantum dynamics [0.0]
We propose an innovative method to investigate directly the properties of a time-dependent density operator $hatrho(t)$.
We can directly compute the expectation value of the commutation relation and thus of the rate of change of $hatrho(t)$.
A simple but important example is demonstrated in the single-qubit case and we discuss extension of the method for practical quantum simulation with many qubits.
arXiv Detail & Related papers (2022-06-01T16:03:43Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Superconducting quantum many-body circuits for quantum simulation and
computing [0.0]
We discuss how superconducting circuits allow the engineering of a wide variety of interactions.
In particular we focus on strong photon-photon interactions mediated by nonlinear elements.
We discuss future perspectives of superconducting quantum simulation that open up when concatenating quantum gates in emerging quantum computing platforms.
arXiv Detail & Related papers (2020-03-18T10:33:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.