Detecting Errors through Ensembling Prompts (DEEP): An End-to-End LLM Framework for Detecting Factual Errors
- URL: http://arxiv.org/abs/2406.13009v1
- Date: Tue, 18 Jun 2024 18:59:37 GMT
- Title: Detecting Errors through Ensembling Prompts (DEEP): An End-to-End LLM Framework for Detecting Factual Errors
- Authors: Alex Chandler, Devesh Surve, Hui Su,
- Abstract summary: We propose an end-to-end framework for detecting factual errors in text summarization.
Our framework uses a diverse set of LLM prompts to identify factual inconsistencies.
We calibrate the ensembled models to produce empirically accurate probabilities that a text is factually consistent or free of hallucination.
- Score: 11.07539342949602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate text summarization is one of the most common and important tasks performed by Large Language Models, where the costs of human review for an entire document may be high, but the costs of errors in summarization may be even greater. We propose Detecting Errors through Ensembling Prompts (DEEP) - an end-to-end large language model framework for detecting factual errors in text summarization. Our framework uses a diverse set of LLM prompts to identify factual inconsistencies, treating their outputs as binary features, which are then fed into ensembling models. We then calibrate the ensembled models to produce empirically accurate probabilities that a text is factually consistent or free of hallucination. We demonstrate that prior models for detecting factual errors in summaries perform significantly worse without optimizing the thresholds on subsets of the evaluated dataset. Our framework achieves state-of-the-art (SOTA) balanced accuracy on the AggreFact-XSUM FTSOTA, TofuEval Summary-Level, and HaluEval Summarization benchmarks in detecting factual errors within transformer-generated text summaries. It does so without any fine-tuning of the language model or reliance on thresholding techniques not available in practical settings.
Related papers
- Full-text Error Correction for Chinese Speech Recognition with Large Language Model [11.287933170894311]
Large Language Models (LLMs) have demonstrated substantial potential for error correction in Automatic Speech Recognition (ASR)
This paper investigates the effectiveness of LLMs for error correction in full-text generated by ASR systems from longer speech recordings.
arXiv Detail & Related papers (2024-09-12T06:50:45Z) - AMRFact: Enhancing Summarization Factuality Evaluation with AMR-Driven Negative Samples Generation [57.8363998797433]
We propose AMRFact, a framework that generates perturbed summaries using Abstract Meaning Representations (AMRs)
Our approach parses factually consistent summaries into AMR graphs and injects controlled factual inconsistencies to create negative examples, allowing for coherent factually inconsistent summaries to be generated with high error-type coverage.
arXiv Detail & Related papers (2023-11-16T02:56:29Z) - Annotating and Detecting Fine-grained Factual Errors for Dialogue
Summarization [34.85353544844499]
We present the first dataset with fine-grained factual error annotations named DIASUMFACT.
We define fine-grained factual error detection as a sentence-level multi-label classification problem.
We propose an unsupervised model ENDERANKER via candidate ranking using pretrained encoder-decoder models.
arXiv Detail & Related papers (2023-05-26T00:18:33Z) - Interpretable Automatic Fine-grained Inconsistency Detection in Text
Summarization [56.94741578760294]
We propose the task of fine-grained inconsistency detection, the goal of which is to predict the fine-grained types of factual errors in a summary.
Motivated by how humans inspect factual inconsistency in summaries, we propose an interpretable fine-grained inconsistency detection model, FineGrainFact.
arXiv Detail & Related papers (2023-05-23T22:11:47Z) - Towards Fine-Grained Information: Identifying the Type and Location of
Translation Errors [80.22825549235556]
Existing approaches can not synchronously consider error position and type.
We build an FG-TED model to predict the textbf addition and textbfomission errors.
Experiments show that our model can identify both error type and position concurrently, and gives state-of-the-art results.
arXiv Detail & Related papers (2023-02-17T16:20:33Z) - Correcting Diverse Factual Errors in Abstractive Summarization via
Post-Editing and Language Model Infilling [56.70682379371534]
We show that our approach vastly outperforms prior methods in correcting erroneous summaries.
Our model -- FactEdit -- improves factuality scores by over 11 points on CNN/DM and over 31 points on XSum.
arXiv Detail & Related papers (2022-10-22T07:16:19Z) - Understanding Factual Errors in Summarization: Errors, Summarizers,
Datasets, Error Detectors [105.12462629663757]
In this work, we aggregate factuality error annotations from nine existing datasets and stratify them according to the underlying summarization model.
We compare performance of state-of-the-art factuality metrics, including recent ChatGPT-based metrics, on this stratified benchmark and show that their performance varies significantly across different types of summarization models.
arXiv Detail & Related papers (2022-05-25T15:26:48Z) - Factual Error Correction for Abstractive Summaries Using Entity
Retrieval [57.01193722520597]
We propose an efficient factual error correction system RFEC based on entities retrieval post-editing process.
RFEC retrieves the evidence sentences from the original document by comparing the sentences with the target summary.
Next, RFEC detects the entity-level errors in the summaries by considering the evidence sentences and substitutes the wrong entities with the accurate entities from the evidence sentences.
arXiv Detail & Related papers (2022-04-18T11:35:02Z) - CONFIT: Toward Faithful Dialogue Summarization with
Linguistically-Informed Contrastive Fine-tuning [5.389540975316299]
Factual inconsistencies in generated summaries severely limit the practical applications of abstractive dialogue summarization.
We provide a typology of factual errors with annotation data to highlight the types of errors and move away from a binary understanding of factuality.
We propose a training strategy that improves the factual consistency and overall quality of summaries via a novel contrastive fine-tuning, called ConFiT.
arXiv Detail & Related papers (2021-12-16T09:08:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.