Annotating and Detecting Fine-grained Factual Errors for Dialogue
Summarization
- URL: http://arxiv.org/abs/2305.16548v1
- Date: Fri, 26 May 2023 00:18:33 GMT
- Title: Annotating and Detecting Fine-grained Factual Errors for Dialogue
Summarization
- Authors: Rongxin Zhu, Jianzhong Qi, Jey Han Lau
- Abstract summary: We present the first dataset with fine-grained factual error annotations named DIASUMFACT.
We define fine-grained factual error detection as a sentence-level multi-label classification problem.
We propose an unsupervised model ENDERANKER via candidate ranking using pretrained encoder-decoder models.
- Score: 34.85353544844499
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A series of datasets and models have been proposed for summaries generated
for well-formatted documents such as news articles. Dialogue summaries,
however, have been under explored. In this paper, we present the first dataset
with fine-grained factual error annotations named DIASUMFACT. We define
fine-grained factual error detection as a sentence-level multi-label
classification problem, and we evaluate two state-of-the-art (SOTA) models on
our dataset. Both models yield sub-optimal results, with a macro-averaged F1
score of around 0.25 over 6 error classes. We further propose an unsupervised
model ENDERANKER via candidate ranking using pretrained encoder-decoder models.
Our model performs on par with the SOTA models while requiring fewer resources.
These observations confirm the challenges in detecting factual errors from
dialogue summaries, which call for further studies, for which our dataset and
results offer a solid foundation.
Related papers
- DECIDER: Leveraging Foundation Model Priors for Improved Model Failure Detection and Explanation [18.77296551727931]
We propose DECIDER, a novel approach that leverages priors from large language models (LLMs) and vision-language models (VLMs) to detect failures in image models.
DECIDER consistently achieves state-of-the-art failure detection performance, significantly outperforming baselines in terms of the overall Matthews correlation coefficient.
arXiv Detail & Related papers (2024-08-01T07:08:11Z) - Detecting Errors through Ensembling Prompts (DEEP): An End-to-End LLM Framework for Detecting Factual Errors [11.07539342949602]
We propose an end-to-end framework for detecting factual errors in text summarization.
Our framework uses a diverse set of LLM prompts to identify factual inconsistencies.
We calibrate the ensembled models to produce empirically accurate probabilities that a text is factually consistent or free of hallucination.
arXiv Detail & Related papers (2024-06-18T18:59:37Z) - Parameter-Efficient Instruction Tuning of Large Language Models For Extreme Financial Numeral Labelling [29.84946857859386]
We study the problem of automatically annotating relevant numerals occurring in the financial documents with their corresponding tags.
We propose a parameter efficient solution for the task using LoRA.
Our proposed model, FLAN-FinXC, achieves new state-of-the-art performances on both the datasets.
arXiv Detail & Related papers (2024-05-03T16:41:36Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
We propose a new evaluation method, SQC-Score.
Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score.
Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics.
arXiv Detail & Related papers (2024-04-04T15:36:53Z) - Towards Fine-Grained Information: Identifying the Type and Location of
Translation Errors [80.22825549235556]
Existing approaches can not synchronously consider error position and type.
We build an FG-TED model to predict the textbf addition and textbfomission errors.
Experiments show that our model can identify both error type and position concurrently, and gives state-of-the-art results.
arXiv Detail & Related papers (2023-02-17T16:20:33Z) - Discover, Explanation, Improvement: An Automatic Slice Detection
Framework for Natural Language Processing [72.14557106085284]
slice detection models (SDM) automatically identify underperforming groups of datapoints.
This paper proposes a benchmark named "Discover, Explain, improve (DEIM)" for classification NLP tasks.
Our evaluation shows that Edisa can accurately select error-prone datapoints with informative semantic features.
arXiv Detail & Related papers (2022-11-08T19:00:00Z) - Correcting Diverse Factual Errors in Abstractive Summarization via
Post-Editing and Language Model Infilling [56.70682379371534]
We show that our approach vastly outperforms prior methods in correcting erroneous summaries.
Our model -- FactEdit -- improves factuality scores by over 11 points on CNN/DM and over 31 points on XSum.
arXiv Detail & Related papers (2022-10-22T07:16:19Z) - Understanding Factual Errors in Summarization: Errors, Summarizers,
Datasets, Error Detectors [105.12462629663757]
In this work, we aggregate factuality error annotations from nine existing datasets and stratify them according to the underlying summarization model.
We compare performance of state-of-the-art factuality metrics, including recent ChatGPT-based metrics, on this stratified benchmark and show that their performance varies significantly across different types of summarization models.
arXiv Detail & Related papers (2022-05-25T15:26:48Z) - MeetSum: Transforming Meeting Transcript Summarization using
Transformers! [2.1915057426589746]
We utilize a Transformer-based Pointer Generator Network to generate abstract summaries for meeting transcripts.
This model uses 2 LSTMs as an encoder and a decoder, a Pointer network which copies words from the inputted text, and a Generator network to produce out-of-vocabulary words.
We show that training the model on a news summary dataset and using zero-shot learning to test it on the meeting dataset proves to produce better results than training it on the AMI meeting dataset.
arXiv Detail & Related papers (2021-08-13T16:34:09Z) - TACRED Revisited: A Thorough Evaluation of the TACRED Relation
Extraction Task [80.38130122127882]
TACRED is one of the largest, most widely used crowdsourced datasets in Relation Extraction (RE)
In this paper, we investigate the questions: Have we reached a performance ceiling or is there still room for improvement?
We find that label errors account for 8% absolute F1 test error, and that more than 50% of the examples need to be relabeled.
arXiv Detail & Related papers (2020-04-30T15:07:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.