論文の概要: Stackelberg Games with $k$-Submodular Function under Distributional Risk-Receptiveness and Robustness
- arxiv url: http://arxiv.org/abs/2406.13023v2
- Date: Fri, 21 Jun 2024 19:51:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 11:16:10.725288
- Title: Stackelberg Games with $k$-Submodular Function under Distributional Risk-Receptiveness and Robustness
- Title(参考訳): 分布的リスク受容性とロバスト性を考慮した$k$サブモジュラー関数付きスタックルバーグゲーム
- Authors: Seonghun Park, Manish Bansal,
- Abstract要約: 本研究では,不確実性や攻撃を受けやすいデータを用いた特徴選択などの機械学習問題に適用可能な,逆向き文脈における部分モジュラ最適化について検討する。
我々は、攻撃者(またはインターディクタ)とディフェンダーの間のStackelbergゲームに焦点を当て、攻撃者は$k$-submodular関数を最大化するディフェンダーの目的を最小化することを目的としている。
本稿では、分散リスク-Averse $k$-SIPと分散リスク-Receptive $k$-SIPと、それを解くための有限収束正確なアルゴリズムを紹介する。
- 参考スコア(独自算出の注目度): 0.8233493213841317
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study submodular optimization in adversarial context, applicable to machine learning problems such as feature selection using data susceptible to uncertainties and attacks. We focus on Stackelberg games between an attacker (or interdictor) and a defender where the attacker aims to minimize the defender's objective of maximizing a $k$-submodular function. We allow uncertainties arising from the success of attacks and inherent data noise, and address challenges due to incomplete knowledge of the probability distribution of random parameters. Specifically, we introduce Distributionally Risk-Averse $k$-Submodular Interdiction Problem (DRA $k$-SIP) and Distributionally Risk-Receptive $k$-Submodular Interdiction Problem (DRR $k$-SIP) along with finitely convergent exact algorithms for solving them. The DRA $k$-SIP solution allows risk-averse interdictor to develop robust strategies for real-world uncertainties. Conversely, DRR $k$-SIP solution suggests aggressive tactics for attackers, willing to embrace (distributional) risk to inflict maximum damage, identifying critical vulnerable components, which can be used for the defender's defensive strategies. The optimal values derived from both DRA $k$-SIP and DRR $k$-SIP offer a confidence interval-like range for the expected value of the defender's objective function, capturing distributional ambiguity. We conduct computational experiments using instances of feature selection and sensor placement problems, and Wisconsin breast cancer data and synthetic data, respectively.
- Abstract(参考訳): 本研究では,不確実性や攻撃を受けやすいデータを用いた特徴選択などの機械学習問題に適用可能な,逆向き文脈における部分モジュラ最適化について検討する。
我々は、攻撃者(またはインターディクタ)とディフェンダーの間のStackelbergゲームに焦点を当て、攻撃者は$k$-submodular関数を最大化するディフェンダーの目的を最小化することを目的としている。
攻撃の成功やデータノイズに起因する不確実性を許容し、乱数パラメータの確率分布に関する不完全な知識による課題に対処する。
具体的には、DRA $k$-submodular Interdiction Problem (DRA $k$-SIP) と分散型リスク受容型 $k$-submodular Interdiction Problem (DRR $k$-SIP) と、それを解くための有限収束正確なアルゴリズムを導入する。
DRA $k$-SIPソリューションは、現実の不確実性に対する堅牢な戦略を開発するためのリスク・アバース・インターディクタを可能にする。
逆に、DRR $k$-SIPソリューションは攻撃者に対して攻撃的な戦術を提案し、最大ダメージを与える(分配的な)リスクを受け入れ、攻撃者の防御戦略に使用できる重要な脆弱なコンポーネントを特定する。
DRA $k$-SIPとDRR $k$-SIPの両方から導かれる最適値は、ディフェンダーの目的関数の期待値に対して信頼区間のような範囲を提供し、分布の曖昧さをキャプチャする。
特徴選択問題とセンサ配置問題,ウィスコンシン州乳癌データと合成データを用いて計算実験を行った。
関連論文リスト
- Adversarial Attacks Neutralization via Data Set Randomization [3.655021726150369]
ディープラーニングモデルに対する敵対的な攻撃は、信頼性とセキュリティに深刻な脅威をもたらす。
本稿では,超空間射影に根ざした新しい防御機構を提案する。
提案手法は,敵対的攻撃に対するディープラーニングモデルの堅牢性を高めていることを示す。
論文 参考訳(メタデータ) (2023-06-21T10:17:55Z) - Wasserstein distributional robustness of neural networks [9.79503506460041]
ディープニューラルネットワークは敵攻撃(AA)に弱いことが知られている
画像認識タスクでは、元の小さな摂動によって画像が誤分類される可能性がある。
本稿では,Wassersteinの分散ロバスト最適化(DRO)技術を用いて問題を再検討し,新しいコントリビューションを得た。
論文 参考訳(メタデータ) (2023-06-16T13:41:24Z) - Robust Lipschitz Bandits to Adversarial Corruptions [61.85150061213987]
リプシッツ・バンディット(英: Lipschitz bandit)は、計量空間上で定義された連続アーム集合を扱うバンディットの変種である。
本稿では,敵対的腐敗の存在下でのリプシッツ・バンディットの新たな問題を紹介する。
我々の研究は、両タイプの敵の下でサブ線形後悔を達成できるロバストなリプシッツ・バンディットアルゴリズムの最初のラインを提示する。
論文 参考訳(メタデータ) (2023-05-29T18:16:59Z) - Reward Poisoning Attacks on Offline Multi-Agent Reinforcement Learning [17.80728511507729]
攻撃者は、中毒のコストを発生させながら、オフラインデータセットで異なる学習者に報酬ベクトルを変更することができる。
攻撃者は、その中毒コストを最小限に抑えるために、線形プログラムを定式化する方法を示す。
我々の研究は、敵攻撃に対する堅牢なMARLの必要性を示している。
論文 参考訳(メタデータ) (2022-06-04T03:15:57Z) - Byzantine-Robust Online and Offline Distributed Reinforcement Learning [60.970950468309056]
本稿では,複数のエージェントが環境を探索し,その経験を中央サーバを通じて伝達する分散強化学習環境について考察する。
エージェントの$alpha$-fractionは敵対的であり、任意の偽情報を報告することができる。
我々は、これらの対立エージェントの存在下で、マルコフ決定プロセスの根底にある準最適政策を特定することを模索する。
論文 参考訳(メタデータ) (2022-06-01T00:44:53Z) - Anti-Concentrated Confidence Bonuses for Scalable Exploration [57.91943847134011]
固有の報酬は、探検と探検のトレードオフを扱う上で中心的な役割を果たす。
楕円ボーナスを効率的に近似するためのエンファンティ集中型信頼境界を導入する。
我々は,Atariベンチマーク上での現代固有の報酬と競合する,深層強化学習のための実用的な変種を開発する。
論文 参考訳(メタデータ) (2021-10-21T15:25:15Z) - Online Adversarial Attacks [57.448101834579624]
我々は、実世界のユースケースで見られる2つの重要な要素を強調し、オンライン敵攻撃問題を定式化する。
まず、オンライン脅威モデルの決定論的変種を厳格に分析する。
このアルゴリズムは、現在の最良の単一しきい値アルゴリズムよりも、$k=2$の競争率を確実に向上させる。
論文 参考訳(メタデータ) (2021-03-02T20:36:04Z) - Bayesian Robust Optimization for Imitation Learning [34.40385583372232]
逆強化学習は、パラメータ化された報酬関数を学習することにより、新しい状態への一般化を可能にする。
既存のIRLに基づく安全な模倣学習アプローチは、maxminフレームワークを使用してこの不確実性に対処する。
BROILは、リターン最大化とリスク最小化の動作を補間する自然な方法を提供する。
論文 参考訳(メタデータ) (2020-07-24T01:52:11Z) - Toward Adversarial Robustness via Semi-supervised Robust Training [93.36310070269643]
アドリラルな例は、ディープニューラルネットワーク(DNN)に対する深刻な脅威であることが示されている。
R_stand$ と $R_rob$ の2つの異なるリスクを共同で最小化することで、新しい防御手法であるロバストトレーニング(RT)を提案する。
論文 参考訳(メタデータ) (2020-03-16T02:14:08Z) - Upper Confidence Primal-Dual Reinforcement Learning for CMDP with
Adversarial Loss [145.54544979467872]
マルコフ決定過程(CMDP)に対するオンライン学習の検討
本稿では,遷移モデルから標本化した軌跡のみを必要とする,新しいEmphupper confidence primal-dualアルゴリズムを提案する。
我々の分析では、ラグランジュ乗算過程の新たな高確率ドリフト解析を、高信頼強化学習の記念後悔解析に組み入れている。
論文 参考訳(メタデータ) (2020-03-02T05:02:23Z) - Robust Stochastic Bandit Algorithms under Probabilistic Unbounded
Adversarial Attack [41.060507338755784]
本稿では,各ラウンドで敵が一定の確率で攻撃する攻撃モデルについて検討する。
そこで我々は, 中央値および探索支援UPBアルゴリズム(med-E-UCB)と中央値の$epsilon$-greedyアルゴリズム(med-$epsilon$-greedy)を提案する。
どちらのアルゴリズムも上記の攻撃モデルに対して確実に堅牢である。より具体的には、どちらのアルゴリズムも$mathcalO(log T)$ pseudo-regret (i.e.)を達成することを示す。
論文 参考訳(メタデータ) (2020-02-17T19:21:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。