論文の概要: ABNet: Attention BarrierNet for Safe and Scalable Robot Learning
- arxiv url: http://arxiv.org/abs/2406.13025v1
- Date: Tue, 18 Jun 2024 19:37:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 00:18:18.525010
- Title: ABNet: Attention BarrierNet for Safe and Scalable Robot Learning
- Title(参考訳): ABNet: 安全でスケーラブルなロボット学習のための注意障壁ネット
- Authors: Wei Xiao, Tsun-Hsuan Wang, Daniela Rus,
- Abstract要約: バリアベースの手法は、安全なロボット学習における主要なアプローチの1つである。
本稿では,より大規模な基本安全モデルを段階的に構築するスケーラブルなAttention BarrierNet(ABNet)を提案する。
2次元ロボット障害物回避、安全なロボット操作、視覚に基づくエンドツーエンド自動運転におけるABNetの強みを実証する。
- 参考スコア(独自算出の注目度): 58.4951884593569
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safe learning is central to AI-enabled robots where a single failure may lead to catastrophic results. Barrier-based method is one of the dominant approaches for safe robot learning. However, this method is not scalable, hard to train, and tends to generate unstable signals under noisy inputs that are challenging to be deployed for robots. To address these challenges, we propose a novel Attention BarrierNet (ABNet) that is scalable to build larger foundational safe models in an incremental manner. Each head of BarrierNet in the ABNet could learn safe robot control policies from different features and focus on specific part of the observation. In this way, we do not need to one-shotly construct a large model for complex tasks, which significantly facilitates the training of the model while ensuring its stable output. Most importantly, we can still formally prove the safety guarantees of the ABNet. We demonstrate the strength of ABNet in 2D robot obstacle avoidance, safe robot manipulation, and vision-based end-to-end autonomous driving, with results showing much better robustness and guarantees over existing models.
- Abstract(参考訳): 安全な学習は、単一の失敗が破滅的な結果をもたらす可能性のあるAI対応ロボットの中心である。
バリアベースの手法は、安全なロボット学習における主要なアプローチの1つである。
しかし、この方法はスケーラブルではなく、訓練が困難であり、ロボットに展開するのが困難なノイズの多い入力の下で不安定な信号を生成する傾向がある。
これらの課題に対処するために、我々は、より大規模な基盤安全なモデルを漸進的に構築するスケーラブルな、新しい注意障壁ネット(ABNet)を提案する。
ABNetのBarrierNetの各ヘッドは、さまざまな特徴から安全なロボット制御ポリシーを学び、観察の特定の部分に焦点を当てることができた。
このように、我々は複雑なタスクのための大きなモデルを一括で構築する必要はなく、安定した出力を確保しながらモデルのトレーニングを著しく促進する。
最も重要なことは、ABNetの安全保証を正式に証明できることです。
2次元ロボット障害物回避、安全なロボット操作、視覚に基づくエンドツーエンド自動運転におけるABNetの強みを示す。
関連論文リスト
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
本稿では,インターネット規模のセマンティック知識を継承するために,事前学習された視覚言語モデル(VLM)上に構築された新しいフローマッチングアーキテクチャを提案する。
我々は,事前訓練後のタスクをゼロショットで実行し,人からの言語指導に追従し,微調整で新たなスキルを習得する能力の観点から,我々のモデルを評価した。
論文 参考訳(メタデータ) (2024-10-31T17:22:30Z) - Robotic Control via Embodied Chain-of-Thought Reasoning [86.6680905262442]
学習したロボット制御ポリシーの鍵となる制限は、トレーニングデータの外部で一般化できないことである。
視覚言語行動モデル(VLA)に関する最近の研究は、大規模なインターネット事前学習型視覚言語モデルを使用することで、その堅牢性と一般化能力を大幅に向上させることができることを示した。
ロボットの動作を予測する前に、VLAに対して、計画、サブタスク、動作、視覚的接地機能について複数の推論を行うために、VLAに対してEmbodied Chain-of-Thought Reasoning (ECoT)を導入する。
論文 参考訳(メタデータ) (2024-07-11T17:31:01Z) - Safe Reinforcement Learning on the Constraint Manifold: Theory and Applications [21.98309272057848]
本稿では,学習に基づくロボットシステムに対して,複雑な安全制約を原則的に課す方法について述べる。
我々のアプローチは、安全ロボット構成の集合を表すConstraint Manifoldの概念に基づいている。
実世界のロボットエアホッケータスクにおいて,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-04-13T20:55:15Z) - Deception Game: Closing the Safety-Learning Loop in Interactive Robot
Autonomy [7.915956857741506]
既存の安全手法は、ロボットが実行時に学習し適応する能力を無視することが多く、過度に保守的な行動を引き起こす。
本稿では,ロボットの進化する不確実性を明示的に考慮した安全制御ポリシを合成するための,新しいクローズドループパラダイムを提案する。
論文 参考訳(メタデータ) (2023-09-03T20:34:01Z) - Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from
Offline Data [101.43350024175157]
自己指導型学習は、制御戦略を学ぶのに必要な人間のアノテーションとエンジニアリングの労力を減らす可能性がある。
我々の研究は、強化学習(RL)自体が自己監督的な問題であることを示す先行研究に基づいている。
コントラスト学習に基づく自己教師付きRLアルゴリズムは,実世界の画像に基づくロボット操作タスクを解くことができることを示す。
論文 参考訳(メタデータ) (2023-06-06T01:36:56Z) - Reinforcement Learning for Safe Robot Control using Control Lyapunov
Barrier Functions [9.690491406456307]
強化学習(RL)は、ロボットの複雑な制御タスクを管理する際の優れた性能を示す。
本稿では、データのみに基づいて安全性と到達可能性を分析するために、制御型リアプノフバリア関数(CLBF)について検討する。
また、Lyapunov barrier actor-critic (LBAC) を提案し、データに基づく安全性と到達性条件の近似を満足するコントローラを探索した。
論文 参考訳(メタデータ) (2023-05-16T20:27:02Z) - Distributional Instance Segmentation: Modeling Uncertainty and High
Confidence Predictions with Latent-MaskRCNN [77.0623472106488]
本稿では,潜在符号を用いた分散インスタンス分割モデルのクラスについて検討する。
ロボットピッキングへの応用として,高い精度を実現するための信頼性マスク手法を提案する。
本手法は,新たにリリースした曖昧なシーンのデータセットを含め,ロボットシステムにおける致命的なエラーを著しく低減できることを示す。
論文 参考訳(メタデータ) (2023-05-03T05:57:29Z) - Safe reinforcement learning of dynamic high-dimensional robotic tasks:
navigation, manipulation, interaction [31.553783147007177]
強化学習では、損傷を起こさない環境を探索する上で、安全はより基本的なものである。
本稿では,各種ロボット作業の強化学習のための安全探索の新たな定式化について紹介する。
我々のアプローチは、幅広い種類のロボットプラットフォームに適用され、データから学んだ複雑な衝突制約の下でも安全を強制する。
論文 参考訳(メタデータ) (2022-09-27T11:23:49Z) - Safe Reinforcement Learning Using Black-Box Reachability Analysis [20.875010584486812]
強化学習(Reinforcement Learning, RL)は、不確実な環境下でのロボットの動き計画と制御を高度に行うことができる。
広範な展開を正当化するためには、ロボットは性能を犠牲にすることなく安全上の制約を尊重しなければならない。
我々は3つの主要コンポーネントを持つブラックボックス到達可能性に基づく安全層(BRSL)を提案する。
論文 参考訳(メタデータ) (2022-04-15T10:51:09Z) - Improving Input-Output Linearizing Controllers for Bipedal Robots via
Reinforcement Learning [85.13138591433635]
入力出力線形化コントローラの主な欠点は、正確な力学モデルが必要であり、入力制約を考慮できないことである。
本稿では,強化学習技術を用いた二足歩行ロボット制御の具体例について,両課題に対処する。
論文 参考訳(メタデータ) (2020-04-15T18:15:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。